人教版八年级下册数学复习课件
人教版八年级下册数学复习课件5篇
八年级数学的课件很重要的。教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,进行的具体设计和安排的一种实用性教学文书。下面小编给大家带来关于人教版八年级下册数学复习课件,希望会对大家的工作与学习有所帮助。
人教版八年级下册数学复习课件(篇1)
教学目的
1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的一一对应,渗透数形结合的思想。
教学分析
重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程
一、复习
1、什么叫有理数?
2、有理数可以如何分类?
(按定义分与按大小分。)
二、新授
1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:
5、实数的绝对值:
6、实数的运算
讲解例1,加上(3)若|x|=π(4)若|x-1|=,那么x的值是多少?
例2,判断题:
(1)任何实数的偶次幂是正实数。()
(2)在实数范围内,若|x|=|y|则x=y。()
(3)0是最小的实数。()
(4)0是绝对值最小的实数。()
解:略
三、练习
P148练习:3、4、5、6。
四、小结
1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业
1、P150习题A:3。
2、基础训练:同步练习1。
人教版八年级下册数学复习课件(篇2)
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学 运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
人教版八年级下册数学复习课件(篇3)
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
人教版八年级下册数学复习课件(篇4)
一、内容和内容解析
1.内容
三角形中相关元素的概念、按边分类及三角形的三边关系。
2.内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解。
本节课的教学重点:三角形中的相关概念和三角形三边关系。
本节课的教学难点:三角形的三边关系。
二、目标和目标解析
1.教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。
(2)理解并且灵活应用三角形三边关系。
2.教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素。
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。
四、教学过程设计
1.创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解。
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。
2.抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定。
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。
补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法。
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.。
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。
3.概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。
(1)以AB为一边的三角形有哪些?
(2)以∠D为一个内角的三角形有哪些?
(3)以E为一个顶点的三角形有哪些?
(4)说出ΔBCD的三个角。
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。
4.拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。
人教版八年级下册数学复习课件(篇5)
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力。