5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 高二 > 人教版高二数学分析教案如何写

人教版高二数学分析教案如何写

开鹏0分享

人教版高二数学分析教案如何写(精选8篇)

高二数学的课件很重要的。课件是教学一篇课文的开场白,是教师在新课的开始阶段,从一定的目的出发,用很短的时间,并采取一定的方法或手段,下面小编给大家带来关于人教版高二数学分析教案如何写,希望会对大家的工作与学习有所帮助。

人教版高二数学分析教案如何写

人教版高二数学分析教案如何写篇1

圆与圆的位置关系

1、利用平面直角坐标系解决直线与圆的位置关系;

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论.

人教版高二数学分析教案如何写篇2

一、变量间的相关关系

1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

二、两个变量的线性相关

从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

当r>0时,表明两个变量正相关;

当r<0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

三、解题方法

1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

3.由相关系数r判断时|r|越趋近于1相关性越强.

人教版高二数学分析教案如何写篇3

直线方程:

1.点斜式:y-y0=k(x-x0)

(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。

2.斜截式:y=kx+b

直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。

3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。

如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。

4.截距式x/a+y/b=1

对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;Ax+By+C=0

将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。

人教版高二数学分析教案如何写篇4

导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

人教版高二数学分析教案如何写篇5

空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

人教版高二数学分析教案如何写篇6

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

复习引入:

向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

人教版高二数学分析教案如何写篇7

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数。

人教版高二数学分析教案如何写篇8

①首先应做好课前的准备,要把课本、笔记本、草稿纸等放在桌子上,上课时不至于出现书、本等丢三落四的现象;

②听课重点听分析、思维方法,要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻地接受老师所要表达的思想。心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。口到:就是在老师的指导下,主动回答问题或参加讨论。手到:就是在听、看、想、说的基础上划出内容的重点,记下讲课的要点以及自己的感受或有创新思维的见解。

③特别注意老师讲课的开头和结尾老师讲课开头,一般是概括前节课的要点,指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

④最后一点就是作好笔记,记笔记是学习过程中的重要环节,它对提高学习效益有不可低估的作用。俗话说“好记性不如烂笔头”。在听课的同时把本节课的重点、难点、典型的例题与教师在课堂中拓展的课外知识及习题记录下来,以备课后复习时用。

    722266