一年级下册数学知识点总结
推荐文章
一年级下册数学知识点总结5篇
教学总结需要客观真实,不应该为了取悦别人或掩盖问题而歪曲事实。教学总结应该以学生的学习效果为出发点,反思自己的教学方法,寻找错误和不足之处。下面就让小编给大家带来一年级下册数学知识点总结,希望大家喜欢!
一年级下册数学知识点总结1
第一单元 加与减(一)
把两个数合并在一起用加法。 加数+加数=和 如:3+13=16中,3和13是加数,和是16。
从一个数里面去掉一部分求剩下的是多少用减法。被减数-减数=差 如:19-6=13中,19是被减数,6是减数,差是13。
20以内进位加法口诀表
9+1=10 8+2=10 7+3=10 6+4=10 5+5=10 4+6=10 3+7=10 2+8=10 1+9=10
9+2=11 8+3=11 7+4=11 6+5=11 5+6=11 4+7=11 3+8=11 2+9=11
9+3=12 8+4=12 7+5=12 6+6=12 5+7=12 4+8=12 3+9=12
9+4=13 8+5=13 7+6=13 6+7=13 5+8=13 4+9=13
9+5=14 8+6=14 7+7=14 6+8=14 5+9=14
9+6=15 8+7=15 7+8=15 6+9=15
9+7=16 8+8=16 7+9=16
9+8=17 8+9=17
9+9=18
1、熟记20以内加法和减法的得数(20以内进位加法、20以内退位减法)
20以内退位减法口诀表
10-1=9 11-2=9 12-3=9 13-4=9 14-5=9 15-6=9 16-7=9 17-8=9 18-9=9
10-2=8 11-3=8 12-4=8 13-5=8 14-6=8 15-7=8 16-8=8 17-9=8
10-3=7 11-4=7 12-5=7 13-6=7 14-7=7 15-8=7 16-9=7
10-4=6 11-5=6 12-6=6 13-7=6 14-8=6 15-9=6
10-5=5 11-6=5 12-7=5 13-8=5 14-9=5
10-6=4 11-7=4 12-8=4 13-9=4
10-7=3 11-8=3 12-9=3
10-8=2 11-9=2
10-9=1
2、看图列式解题时候,要利用图中已知条件正确列式。
常用的关系有:
(1)部分数 + 另一部分数 = 总数
(2)总数 - 部分数 = 另一个部分数
(3)大数 - 小数 = 相差数 谁比谁多几,或谁比谁少几。
求大数列加法。求小数或相差数列减法。
(4)原有 - 借出 = 剩下 用了多少,求还剩多少时用列减法
3、应用题解题时候,要根据已知条件正确列式
(1)、总分关系(加、减法)
部分数+另一部分数=总数 总数-部分数=另一部分数
①、问题中出现“一共、共、全长、原来等” 表示总数时,列加法。
②、问题中出现“还剩、剩下、余下、第一次、第二次、用去、吃了等”表示部分数时,列减法。
(2)、 大小关系(加、减法)
大数-小数=相差数 大数-相差数=小数 小数+相差数=大数
①、“多”字或“少”字后面的数是差数。
②、“比”字左、右两边的数分别是大数、小数。
求大数列加法,求小数或差数列减法。
第二单元 观察物体
观察实物,从两个方向(前〈后〉面或侧面)观察物体所看到的形状可能是不同的。 连线时,要抓住物体的每个方向的特点。
第三单元 生活中的数
1、 数数的方法有:
一个一个的数,1,2,3,4,5,6,7,8,9,10,
两个两个的数,1,3,5,7,9,,11,13,15,17,19 或者2,4,6,8,10,12,14,16,18,20
五个五个的数,5,10,15,20,25,30,35,40
十个十个的数,10,20,30,40,50,60,70,
两位数的计数单位是十位(左边的数),个位(右边的数)
2、两位数的计数单位是十位
两位数有几个十和几个一组成。十位上的数表示有几个十,个位上的数表示有几个一。如95的十位是9,表示9个十,个位是5,表示5个一。
10个十是一百。100有10个十,100有100个一。
最大的两位数是99,最小的两位数是10。最小的三位数是100。
3、比大小
两个两位数比大小,先看十位,十位大的数大;十位相同看个位,个位大的数大。
第四单元 有趣的图形
七巧板由7种图形组成,其中有5个三角形(1,2,4,6,7号),1个正方形(5号),1个平行四边形(3号)。
第五单元加与减(二)
1、掌握100以内数的不进位加法、不退位减法的计算方法,并能正确计算。
(1)整十数加减整十数
(2)两位数加减一位数
(3)两位数加减整十数
(4)两位数加两位数
(5)两位数减两位数
2、在具体情境中提出问题和解决问题的过程。
一年级下册数学知识点总结2
一、认识数
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
二、数一数
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
三、比较数列
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
四、动手做
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
五、找规律
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
六、填一填
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
七、比较2个算式的大小的方法是:
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
八、总结
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
一年级下册数学知识点总结3
1.奇偶性
问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原则
形如:abc=100a+10b+c
3.数的整除特征:
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r
一年级下册数学知识点总结4
数列求和:
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示。
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:sn,=(a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n=(an+a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:确定已知量和未知量,确定使用的公式
一年级下册数学知识点总结5
鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:
若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM
这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2
因为共边,所以两个对应高之比是1:2
而四个小三角形也会存在类似关系
三角形ABE和三角形ACE的面积比是1:2
三角形BED和三角形CED的面积比也是1:2
所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。