5068教学资源网 > 学习宝典 > 数学 > 学习园地 > 考前复习 > 一年级数学知识点总结和复习方法

一年级数学知识点总结和复习方法

升辉0分享

一年级数学知识点总结和复习方法5篇

复习总结是一个重要的学习策略,可以检验自己的学习成果。复习总结可以帮助记忆,加深对知识的理解和应用能力。下面就让小编给大家带来一年级数学知识点总结和复习方法,希望大家喜欢!

一年级数学知识点总结和复习方法1

1、认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

2、结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

3、体会数概念与现实生活的密切联系。

4、认识各种面值的人民币,并会进行简单的计算。

5、使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

6、通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

一年级数学知识点总结和复习方法2

1、加法

(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。

(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。

(3)两个数相加,交换它们的位置,得数不变。

2、减法

(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。

(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。

(3)一个数减另一个数,保持的数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。

1、掌握20以内进位加法的计算方法---“凑十法”“凑小数,拆大数”

将小数凑成10,然后再计算。如:3+9(3+7=10,9可以分成7和2,10+2=12)

“凑大数,拆小数”,将大数凑成10,然后再计算。

如:8+7(8+2=10,7可以分成2和5,10+5=15)

注意:孩子喜欢和熟悉的方法才是最佳方法而且只掌握一种就可以了。

2、20以内不进位加法和不退位减法:

11+6(个位相加,1+6=7)

11+6=1715-3(个位上够减,5-3=2)

15-3=12

3、加强进位和不进位、及不退位的训练。

4、看图列式解题时候,要利用图中已知条件正确列式。

常用的关系有:

(1)部分数+部分数=总数

(2)总数-部分数=另一个部分数

(3)大数-小数=相差数(谁比谁多几,或谁比谁少几)

(4)原有-借出=剩下(用了多少,求还剩多少时用)

3、分类

1、什么叫分类,分类的标准是什么

任何事物都有自己的所属的类别,根据这些类别将同类的事物分在一起就是分类,而这些类别就是我们分类的标准。体验分类结果在单一标准下的一致性和不同标准下的多样性。

如:△△●●☆☆●△●●△△☆●

按形状分:1、△2、☆3、●

按颜色分:1、有颜色2、没有颜色

2、分类的步骤和方法

(1)给定标准:当已知分类标准时,我们只需要判断所给的事物是属于哪个类别的,然后将同一类的事物放在一起即可。

(2)未给定标准:当有很多物体摆在面前,让我们自己确定类别分类时,应首先观察每个物体都有什么样的特点,把具有相同特点的特点的物体放在一起,表示同一类,而这些特点就是分类的标准。

(3)分类的方法是多种多样的。我们可以根据不同的标准分类,可以根据物体的形状、颜色、作用等将物体分类。

3、常见题型有:

(1)把同一类的物体圈起来。

(2)同类的物体画符号“○”“√”。

(3)同类的物体番号填在一起。

4、认识物体和图形

(一)立体图形

1、长方体

长方体是长长的,有6个平平的面,有些面是一样的,有些面是不一样,长方体对面相等,用它可以画出长方形。平时见到的火柴盒、文具盒都是长方体。

2、正方体

正方体四四方方的,它也有6个平平的面,它的边也是直直的。而且它的棱都是一样长,每个面都一样大,无论怎么平放在桌子上,它的高矮都都是一样的,用它可以画出正方形。魔方就是正方体。

3、圆柱体

圆柱就像一根柱子。它有上下两个圆圆的面,而且大小一样,用它可以画出圆形;另一个面是弯曲的,我们把弯曲的面放在桌子上就可以滚动它。

4、球

圆圆的,可以滚来滚去的就是球。平时玩的皮球、篮球、踢的足球都是球。

(二)平面图形

1、长方形:四条边,两条长边相等,两条短边相等。

2、正方形:四条边,而且一样长。

3、圆形:没有角

4、三角形:三条边

(注:三棱柱可以画出三角形和长方形,可不要漏选哦!)

5、认识钟表

会认读整时、半时、整时过一点或差一点到整时这四种时间。

整时:分针指着12,时针指着几就是几时整。

分针指着12,时针指着1就是1时。1:00

分针指着12,时针指着2就是2时。2:00

分针指着12,时针指着4就是4时。4:00

分针指着12,时针指着6就是6时。6:00

半时:时针指1和2的中间,分针指6就是1时半。1:30

时针指2和3的中间,分针指6就是2时半。2:30

时针指3和4的中间,分针指6就是3时半。3:30

时针指4和5的中间,分针指6就是4时半。4:30

时针指5和6的中间,分针指6就是5时半。5:30

时针指6和7的中间,分针指6就是6时半。6:30

注意:半时的时候,分针一定指6,时针指在两数字中间,如如时针指的是一个数,则这个时刻是错误的。而分针指在12附近,时针马上指着准确的数字,此时是大约几时整。

在练习拨针时,时针和分针一定要拨到准确的位置上。

时针和分针并没有正对着钟面上的数,而是稍微偏了一点,像这种差一点不到几时,或是几时刚刚过一点,我们就不能说正好是几时,而应该说“大约是几时”。

注意:“大约是几时”拨针时应该掌握在前后5分以内。

一年级数学知识点总结和复习方法3

退位减法含义:

退位减法(也可以称作借位减法)就是当两个数相减,被减数的个位不够减时,往前一位借位,相当于给这位数加上10,再进行计算。

计算方法举例:

24-15

竖式: 24- 15----------------------

第一步,将2的上面点一点,算为借位·24- 15-----------------------

第二步,将4看做是14计算(0是举例时打占位,实际时省略第二步)·2←← 141 ←← 05------------------------9

第三步,2被借了以后,变成了1,然后计算(个位的0代表计算完毕,结果的0占位,实际时个位照写,占位的不写)2 ←← 10- 10------------------------09

第四步,得出结果(最终写法)·24- 15--------------------------9

一年级数学知识点总结和复习方法4

一、认识数

(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。

(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。

二、数一数

(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。

(二)、数复杂图形数复杂图形时可以按大小分类来数。

(三)、数数按条件的要求去数。

三、比较数列

比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。

四、动手做

(一)、摆一摆要善于寻找不同的方法。

(二)、移一移

五、找规律

(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。

(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。

(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。

六、填一填

(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。

(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。

七、比较2个算式的大小的方法是:

(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;

(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;

(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;

(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。

八、总结

应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。

一年级数学知识点总结和复习方法5

一、认识图形:

1、长方体、正方体、圆柱、球、三棱锥等是立体图形。

2、长方形、正方形、平行四边形、三角形、圆等是平面图形。平面图形是描、画、印、拓立体图形得出的。

3、长方形之间、三角形之间都可以大小不同、形状不同;正方形之间、圆形之间都可以形状相同,大小不同;平行四边形之间大小和形状都可以不同。

4、用几个平面图形可以拼出更大的平面图形或其他的平面图形。可用同样的平面图形,也可用不同的平面图形去拼。七巧板可以拼出许多不同的图案。

二、20以内的退位减法:

1、十几减9、8、7、6、5、4、3、2,计算方法有点数法、破十法、想加算减法。点数法就是画出被减数的个数,圈出减数的个数,点出没圈到的是几,这个数就是差。想加算减法就是利用数的组成,将十几分成9加多少,或8加多少,或7加多少,或6加多少,或5加多少,或4加多少,或3加多少,或2加多少,这个多少就是要求的差。破十法就是将十几分成十加几,先用十去减减数,再把减得的数和几相加,就是要求的差。

2、巧算法:十几减9等于几加1;十几减8等于几加2;十几减7等于几加3;十几减6等于几加4;十几5等于几加5;十几减4等于几加6;十几减3等于几加7;十几减2等于几加8。

3、计算十几减去5、4、3、2,还可以先将5、4、3、2分成几和多少,十几减去几后,再减多少就行了。

4、看图列式时,知道总数和其中的一部分或几部分,求其他的一部分就用减法,知道各部分求总数用加法。

5、解决实际问题,要根据问题选择合适的数字信息,有不该用的数字就不能管它。

6、求一个数比另一个数多几或少几,都是用大数减小数。

三、分类与整理:

我们可以根据不同的用途、颜色、形状等不同特点对事物进行分类。同样多的事物,按不同的标准分类,分类的结果也不同。

四、100以内数的认识:

1、10个1是一十,10个十是一百。几十几就是由几个十和几个一组成的数,如:75是由7个十和5个一组成的数,5个十和7个一组成的数是57。

2、从右边起,第一位是个位,第二位是十位,第三位是百位。同一个数在不同数位上表示不同的意义,个位上的数表示几个一,十位上的数表示几个十,百位上的数表示几个百。读数和写数都要从高位开始,即从左边第一位开始。读数是用汉字表示出来,如:九十八;写数是用阿拉伯数字表示出来,如:98。写数时,哪一位上什么也没有,就要用0占位。

3、只个位上有数字的叫一位数;十位上由数字,个位上不管是几的数字都叫两位数;百位上有数字的,就叫三位数了,如:100。个位上是几表示几个一,十位上是几表示几个十,百位上是几表示几个百。

4、比较数的大小,两位数比,十位上的数大的数大;十位相同,个位上数大的数大;两位数一定比一位数大。

5、根据数从前往后的顺序数,后面的数大于前面的数。

4、描述两个数间的大小,可以用“多一些”、“少一些”、“多得多”、“少得多”、“更接近于”等来描述。

5、解决一个数里有几个另一个数的问题时,可以用圈一圈、数一数或利用数的组成来求解。

6、几十加几就是几十几,如:50+4=54,80+6=86;几加几十等于几十几,如:8+50=58,7+60=67。也就是几加在个位上,十位上照原来的写。

7、几十几减几等于几十,如:95—5=90,73—3=70,即十位照写,个位为0;几十几减几十等于几,如:63—60=3,48—40=8,即十位为0,个位是被减数的个位。

8、用珠子摆数时,按照数的组成去摆,这样摆数有顺序,不重复,没遗漏。

五、认识人民币:

1、人民币的单位有元、角、分,1元=10角,1角=10分,1元=100分。不同面值的人民币兑换时,要看清人民币的面值,兑换前后的钱数要一样多。

2、几元几角换算成角,先要把元换成角,再和几角加起来;几十角换成几元几角,几十角就是几元,再和几角合起来;人民币相加,相同单位才能相加,满10分进位为一角,满10角进位为一元。几十分钱就是几角钱,几十角钱就是几元钱。

3、比较带有元、角、分的数量大小时,要先化成同一单位,再进行比较。人民币相加减时,相同单位相加减,单位不同,要统一单位后再计算。

4、计算:几元几角+几元几角,元和元相加,角和角相加,角满十的,元那里加1,角这里留零头;几元几角+几元,几元和几元相加,角数照搬;几元几角+几角,几角和几角相加,满十的元上加一,不满十的元照搬。几角几分的加减法以此类推。

六、100以内的加法和减法:

1、整十数加整十数,把十位上的数相加是几,和就是几十。整十数减整十数,把十位上的数相减剩几,差就是几十。

2、两位数加一位数,先将两位数的个位数与那个一位数相加得几作为和的个位数,和的十位数就是两位数十位上的那个数。两位数加整十数,先把两位数十位上的数与整十数十位上的数相加作为和的十位数,和的个位数就是两位数的那个个位上的数。计算两位数加一位数或整十数,也可以利用数的组成计算。

3、两位数加一位数,个位相加超过十的三种算法:(1)两个数的个位相加后得一个新的两位数,这个两位数再与原来那个两位数的十位相加。(2)先把两位数凑成整十数,再加上余下的数。(3)先把一位数凑成整十数,再加余下的数。如:25+7=?(1)5+7=12,20+12=32;(2)25+5=30,30+2=32;(3)7+3=10,22+10=32。

4、两位数减一位数,个位够减的,直接用它去减一位数,所得的差是个位上的数,十位上的数就是原来两位数中的十位上的数。两位数减整十数,先用两位数的十位数去减整十数,所得的几十再和原来两位数的个位数相加。

5、比较大小,一般是算式的应算出算式的结果再去比较。

6、两位数减一位数,个位不够减的,有两种算法:(1)将被减数分成几个十和十几,先用十几去减一位数,差再和几个十相加。(2)将被减数分成一个新的两位数和10,先用十减那个一位数,所得的差再和那个新的两位数相加。无论哪种算法,计算结果十位上的数要比原来少1。

7、整十数减一位数,把被减数分解成几十和10后,用10减个位数后的差和几十相加就行。

8、几次加、几次减或加减混合算式中,一般按从左到右的顺序计算,有小括号的必须先算小括号中的。小括号起到了改变运算顺序(就是先算什么,后算什么)的作用。

9、求几个相同数的和是多少,可以用连加的方法;求一个数中含有几个某数,可以用连减的方法。

10、解决这部分的实际问题,可以用连加、连减、数一数、圈一圈、列表等方式。

11、两位数加一位数,个位相加满十的,十位上的数应该比原来多1,个位上就看加了凑够十外还有几个一了。

七、找规律:

1、颜色、数量、大小、形状、数字关系、方向及其他性质等方面表现出的特点叫规律。有些规律的核心是重复,有的则是发展。一组实物依次不断地重复排列(至少重复出现两次以上),可以成为有规律地排列。

2、寻找规律时,先观察图形的排列规律,再观察数字的排列规律。

3、数字的排列规律,可以是后一个数比前一个数多几或少几,即:可以通过计算相邻两个数之间的差找到规律;可以是前两个数相加得第三个数;可以是成组的数重复排列……

4、图形的排列规律,图形的颜色、数量、大小、形状、方向、叠加等的重复或发展都是规律。表现为重复出现的规律,必须一组一组的圈出来,即可发现不合规律的或接下去是什么图形了。如果是发展的规律,则用数字一一标出,也就容易发现错误或推测未知了。

5、识别平面图形,可以通过面边的特点来区分。无论给什么分类,必须先想好分类标准。


    728736