六年级数学下册学习方法总结
六年级数学下册学习方法总结汇总4篇
复习总结需要注意自我评价和认知水平的提升,以便于更好地掌握和应用知识。复习总结可以采用多种形式,如思维导图、课后练习、讲解他人等,以促进学习效果的不同方面的提高。下面就让小编给大家带来六年级数学下册学习方法总结,希望大家喜欢!
六年级数学下册学习方法总结1
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的`仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
六年级数学下册学习方法总结2
一、没有学生的主动参与,就没有成功的课堂教学。 新课程倡导的自主学习、合作学习、探究性学习,都是以学生的积极参与为前提,没有学生的积极参与,就不可能有自主、探究、合作学习。实践证明,学生参与课堂教学的积极性,参与的深度与广度,直接影响着课堂教学的'效果。
二、在教学活动中,教师要当好组织者。教师要充分信任学生,相信学生完全有学习的能力,把机会交给学生,俯下身子看学生的学习,平等参与学生的研究。
三、在教学活动中,教师要做一个成功的引路人。一堂新课开始,教师可通过新课导入的设计、学习氛围的创设,教材所蕴含的兴趣教学因素、课堂内外的各种资源来唤起学生对新知识的兴趣,让学生产生学习的意愿和动力。
总之,在学校的教育改革中,作为一名新课改的实施者,我们应积极投身于新课改的发展之中,成为新课标实施的引领者,与全体教师共同致力于新课标的研究与探索中,共同寻求适应现代教学改革的心路,切实以新观念、新思路、新方法投入教学,适应现代教学改革需要,切实发挥新课标在新时期教学改革中的科学性、引领性,使学生在新课改中获得能力的提高。
六年级数学下册学习方法总结3
“复习课最难上。”这是许多数学教师经常发出的感叹。复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成功感”。最重要的是,到目前为止,复习课还不像新授课有一个基本公认的课堂教学结构(模式)。因为有了这个课堂教学结构,就等于有了可供操作的教学程序。大家知道,结构的优劣决定功能的大小,井然有序的课堂教学结构就像阶梯一样使教者能胸有成竹地带领学生拾阶而上,进而更好更快地掌握知识。经过实验研究,目前我们采用如下的复习课结构。
一、出示复习目标(以下简称亮标)(2分左右)
上课开始,教师直接出示复习课题,接着把预先写在小黑板上的复习目标挂出来。出示的复习目标应注意如下三点:
1、目标要全面。所谓“全面”,就是指按照数学教学大纲上的要求,有针对性地在知识、能力和思想品德三方面提出复习要求,不能厚此薄彼,甚至只提出知识方面的复习要求,把能力与思想品德丢在一边。例如,统计表和统计图的复习,除了应当掌握的知识外,学生的观察能力和应变能力也要得到发展,同时还要注意训练学生一丝不苟的认真态度、追求美观整洁的爱美情操和习惯等。
2、目标要准确。即针对性要强。一是目标中知识、能力、思想品德各方面的要求要准确,二是三者之间不能混淆。如统计表和统计图的复习,复习的目的是:将学过的统计表和统计图强化和分化,防止相关或相似知识的互串。学生易混的问题是:如何确定单位长度?(共性)为什么折线统计图中横标目的间隔要按实际年份留空?(个性)学生最容易遗忘的是:制图后忘掉写数据,或把标题与图表分开等等。在复习课上制定复习目标时,应注意和这些新授课后发现的问题结合起来,以利于解决学生的实际问题。
3、目标要具体。不要提一些抽象或空泛的口号,诸如“通过复习培养学生良好的学习习惯”,粗一听很具体,细一想太空泛,到底培养学生的哪些习惯不得而知。其实一堂课只能按实际教学内容培养学生的某一方面的素质,太多会适得其反。
教学目标不仅是向学生提出的,也是对教师提出的。复习课上教师应紧紧围绕着目标组织教学,就像写文章不能“跑题”一样,复习课也不能“离标”,而应有的放矢。
二、回忆(8分左右)
回忆,就是要求学生将学过的旧知不断提取而再现的过程,这是学生独立联想的有利时机,应尽最大可能让他们独立完成。如果是低年级,可让他们先看书本再回忆并说出来;中高年级也可让学生提前一天预习,这样课上会节省一些时间。当然,回忆过程也离不开教师的启发辅助。我们常采用如下策略:
1、独立地默写。
2、同桌相互说。
3、启发得结果。
如要求学生用“组词”或“造句”等方式回忆出学过哪些“数”?哪些“形”?哪些“式”?哪些“量”?也不失为一种较好的“联想”式回忆的办法。
回忆过程中一般只要求学生写出或讲出“是什么”,不追问“为什么”或“怎么样”,以便一气呵成地将所有旧知“拉出来”,提高回忆的效率。因此,学生回忆时,教师不要过多地“插手”或“插嘴”,而是让学生七嘴八舌地说,龙飞凤舞地写,这时只有一个目的:把有关旧知回忆出来。例如,让学生回忆:我们已经学过了哪些“角”?只要学生讲出锐角、直角、平角……所有的角的名称,不必追问其意义和区别,也不用管这些角的序列。
回忆既是提取旧知的过程,同时也是进一步强化记忆的过程,还是互相启发获得联想结果的过程。
如果学生的回忆不完整,这时可让其他学生或由教师补充,也可暂时放一放,之后在“梳理”中完善。
三、梳理(10分左右)
梳理,就是将旧知识点按一定标准分类。因此,梳理是复习中的重点。梳理要完成两项任务:一是将知识点联接起来(求同),二是把各知识点分化开来(求异)。这些工作教师在备课时应充分准备好,否则上课时会造成混乱。梳理往往同板书联系起来,使视听融为一体,增强复习效果。根据复习内容的异同,通常采用:
1、边梳理边板书。即梳理与板书同步进行。
2、先梳理再板书。即师生先一起将旧知的异同点输出,然后出示板书。
3、先板书后梳理。这在低年级比较适用。运用时也可在挂出板书的同时,边看板书边梳理。
梳理过程,实质上是将知识条理化、系统化的思考过程,其间应用的思考方法主要是“分类”,即根据一定的标准将知识分化。如四边形,根据对边关系可分成两类:两组对边分别平行的.四边形(平行四边形),只有一组对边平行的四边形(梯形)。在小学里,一般应根据学生实际学习的内容及所达到的思维程度来教学,不必拘泥于完全科学性原则而把小学数学知识太宏观化,这就是作为“学科数学”与作为“科学数学”的区别之一。像四边形,严格地讲,应把两组对边都不平行(不规则四边形)作为一类,小学数学不研究它,也没有必要让学生“多此一举”。一定要注意:我们的分类,是将已学过的知识分类,而不是将学生还没有学过的知识分类。其实,分类标准本来就是人为的,更何况对有些分类目前专家们也争论不休,如三角形按边分类就有两种情况:一是分成两大类——不等边三角形和等腰三角形,把等边三角形作为等腰三角形的特例;二是分成三类——不等边三角形、等腰三角形、等边三角形。这就要看给“等腰三角形”怎么下定义了。到底是分得细一些好,还是粗一些好,可看复习内容的多少来定,复习的内容多要粗分,反之则细分为宜。
四、沟通(10分左右)
沟通是复习课的鲜明特质。因为新授课的主要目的是将知识点分化,把握单个知识的本质属性,一般很少也不可能同后继知识发生关联。复习课中,正好就是将所学知识前后贯通、沟通起来,这就是所谓知识点的泛化。
沟通不同于知识之间的简单联结,而是知识本质上的融合。因此,沟通不仅要在异中求同,而且也要在同中求异,这是知识结构转化为认知结构的重要环节。这就是前面谈到的,回忆阶段只求“是什么”,而这里“沟通”时还要追求“为什么”问题。如约分与通分,它们的意义不同,但本质和操作却是同一个理论根据,即分数的基本性质的具体化。操作过程也有差别,约分一律运用“同时缩小相同倍数”,而通分则一般运用“同时扩大相同的倍数”。
沟通时,既可让学生提出疑问,也可由教师出示问题让学生思考回答,还可采用板书填空的形式,这要看具体运作情况而定。
沟通的目的也不仅仅是求同与求异,更重要的是为了灵活地运用知识解决数学问题,进而拓展学生的思维。
五、练习(10分左右)
复习课中的练习与新授课或练习课中的练习都有明显不同。新授课中的练习主要是为了巩固刚学过的新知,因此其练习成分是基本习题占70%左右,侧重于知识方面;练习课中的练习则是为了技能向能力转化,侧重于数学能力的形成;复习课上的练习侧重于知识结构转化为认知结构,因此应出示综合性较强的习题让学生练习。
值得一提的是,复习课上的练习应集中在一起(划定一段时间),而不宜分散进行。这样既能集中学生注意力,又能节省复习时间。
六年级数学下册学习方法总结4
我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。
数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的'内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:
1、注重了数学与生活之间的联系。
《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。
2、概念的得出注重了探究过程、分析过程,体现了活动主题。
通过一组实例,分析共性,找共同特征。
3、铺垫导入恰当,让预设与生成合情合理。
课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。
4、注重了数学陷阱的设置。
把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。
5、注重了学科间的渗透。
在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。