初一数学第一单元知识点总结
初一数学第一单元知识点总结范文4篇
社会科学是一种以社会现象和人类行为为研究对象的学科,涉及经济、心理、政治和文化等基本领域。人文学科是一种以人类文化和创造为研究对象的学科,涉及文学、历史、哲学和艺术等基本领域。下面就让小编给大家带来初一数学第一单元知识点总结,希望大家喜欢!
初一数学第一单元知识点总结1
1、单项式的定义:
由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.
2、单项式的系数:
单项式中的数字因数叫这个单项式的系数.
说明:
⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32
系数是1;4.8a的系数是4.8; 3
⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,
4xy2的系数是4;2x2y的系数是4;
⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的
系数是-1;ab的系数是1;
⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2.
3、单项式的次数:
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
说明:
⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1
的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,
而不是7次,应注意字母z的指数是1而不是0;
⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;
4、在含有字母的式子中如果出现乘号,通常将乘号写作“ ”或者省略不写。
5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。
初一数学第一单元知识点总结2
1相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.
2代数式求值
(1)代数式的:用数值代替代数式里的字母,计算后所得的'结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
题型简单总结以下三种:
①已知条件不化简,所给代数式化简;
②已知条件化简,所给代数式不化简;
③已知条件和所给代数式都要化简.
3由三视图判断几何体
(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;
④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法
初一数学第一单元知识点总结3
知识点、概念总结
1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)<g(x)的定义域被解析式h(x)的定义域所包含,那么不等式f(x)<g(x)与不等式h(x)+f(x)< p="">
(3)如果不等式F(x)0,那么不等式F(x)<g(x)与不等式h(x)f(x)0,那么不等式f(x)h(x)g(x)同解。< p="">
7.不等式的性质:
(1)如果x>y,那么yy;(对称性)
(2)如果x>y,y>z;那么x>z;(传递性)
(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母(运用不等式性质2、3)
(2)去括号
(3)移项(运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1(运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10.一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
(1)求出每个不等式的解集;
(2)求出每个不等式的解集的公共部分;(一般利用数轴)
(3)用代数符号语言来表示公共部分。(也可以说成是下结论)
13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式组的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式组的解集是X<-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x>2,x>3,不等式组的解集是X>3
(2)同小取小
例如,x<2,x<3,不等式组的解集是X<2
(3)大小小大中间找
例如,x<2,x>1,不等式组的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
初一数学第一单元知识点总结4
正数和负数
⒈、正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2、具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:—8℃
3、0表示的意义
(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;
(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:
(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数
1、有理数的概念
(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)
(2)正分数和负分数统称为分数
(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。