5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 五年级 > 五年级数学教案简短

五年级数学教案简短

开鹏0分享

五年级数学教案简短模板5篇

五年级数学教案怎么写。为了确保事情或工作科学有序进行,就不得不需要事先制定方案,方案是书面计划,具有内容条理清楚、步骤清晰的特点。下面小编给大家带来关于五年级数学教案简短,希望会对大家的工作与学习有所帮助。

五年级数学教案简短

五年级数学教案简短(篇1)

教学内容:

教科书P86-87例1及相应的“试一试”,练习十五第1-3题。

教学目标:

1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。

2.在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。

3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重点:

确定积的小数点的位置。

教学难点:

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。

教学过程:

一、复习旧知,引入课题

1.用竖式计算

0.57×23=2.5×44=

提问:说说你是怎么算的?

2.根据13×12=156,直接写出下面各题的积。

1.3×12=

13×1.2=

1.3×1.2=

(要求学生回答问题要完整.例如:因为13×12=156,而1.3×1.2中13缩小了十倍,所以积就要缩小十倍是15.6)

提问:我们以前学习了小数乘整数,那么1.3×1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)

二、引导探究,掌握方法。

1.课件出示例题。

提问:

①从图中,你能获取那些数学信息?

②根据这些信息,你能提出哪些数学问题?

③下面我们就来解决小明房间的面积有多大?

你会列式计算小明房间的面积吗?

(出示3.6×2.8=)

2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)

3、探索笔算方法

①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算.(谁能在黑板上写出3.6×2.8的竖式)。

②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上

③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书:

36

×28

④做错的同学订正一下。

⑤引导学生想一想小数乘小数怎么算?

三、自主探索,形成认识

教学“试一试”

1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。

2.观察黑板上的四道竖式,思考

①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?

②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?

3.总结、归纳小数乘小数的计算方法。

四、巩固练习,加强理解

1.解决1.3×1.2=1.56

让学生说说为什么?(去掉问号)

2.你能给下面各题的积点上小数点吗?(P87第一题)

提问:说说为什么这样点小数点?要注意些什么?

4.用竖式计算:

4.6×1.2=1.8×4.5=10.4×2.5=

3.下面的计算对吗?把不对的改正过来(P89第2题)

五、全课小结

这节课你有什么收获?有什么需要提醒其他同学的?

六、作业:

P89第1.3题

五年级数学教案简短(篇2)

教学目标:

1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。

2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。

3.培养学生运用迁移的数学思想解决新问题的能力。

教学重点:

小数乘小数的计算方法。

教学难点:

小数乘法中积的小数位数和小数点位置的确定。

教学过程:

一、类比迁移,情境展开

教学例3。

1.出示例题。

(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?

(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?

(3)板书(或用PPT课件演示):2.4×0.8=________2.尝试计算。

(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)

(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?

(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?

(4)指名学生口答,教师适时板书(或PPT课件演示)学生的讨论结果。

3.理解算理。

引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。

4.进一步明确算理(两个因数的小数位数不同)。

(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?

(2)板书(或用PPT课件演示):1.92×0.9=________

(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?

【设计意图:在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。】

二、深化探究,总结算法

(一)探究因数与积的小数位数的关系

1.学生独立完成第5页的“做一做”。

2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?

(二)小结小数乘法的计算方法

1.组织学生回顾、讨论小数乘法是怎样计算的。

2.组织学生汇报、交流自己的计算方法。

(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)

(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)

3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。

【设计意图:教材上安排了计算方法的小结,通过本环节的教学有意识地培养学生由具体到抽象的归纳概括能力。】

三、引发冲突,突破难点

(一)教学例4

1.出示例题。

(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?

(2)板书(或用PPT课件演示):0.56×0.04=________

2.尝试计算。

(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。

(2)师:在计算时,遇到了什么新问题?

(3)师:乘得的积的小数位数不够时,怎样点小数点呢?

(二)及时巩固

1.学生独立完成教材第6页“做一做”的第1题。

(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)

2.学生完成教材第6页“做一做”第2题的计算。

(三)探究积与因数的大小关系

1.集体订正“做一做”第2题时,引导学生分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。

2.组织学生交流、总结自己发现的规律。

(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?

(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?

3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。

【设计意图:“乘得的积的小数数位不够,怎么点小数点?”是小数乘法中的难点,让学生用刚刚总结的小数乘法的计算法则来进行例4的计算,意图就是引发学生的认知冲突,促成学生用已有的知识和经验化解冲突,解决遇到的新问题,从而突破学习难点。引导学生自主探索积和因数之间的大小关系,不仅为确定小数点的位置提供了操作依据,避免在确定积的小数位数时发生错误,而且也有利于培养学生的探究意识和分析归纳能力。】

四、实践应用,内化提升

(一)基本练习

1.练习二第1题(基本计算)。

(1)学生独立练习。

(2)组织学生交流和订正。(其中有第一个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)

2.练习二第2题(基本应用)。

(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。

(2)引导学生回顾单价、数量和总价之间的关系。

(3)学生独立完成。

(二)拓展练习

补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)

0.48=()×()=()×()

【设计意图:通过分层次的练习,旨在让学生通过基本计算全面掌握小数乘法的计算方法,培养学生的运算能力;通过基本应用感受小数乘法在现实生活中的实际应用,培养学生的应用意识;通过拓展练习进一步体会因数与积小数位数之间的关系,培养学生灵活运用小数乘法计算方法的能力。】

五、全课总结,畅谈收获

说说这节课你有什么收获?

六、课堂练习

练习二第3、4、5题。

五年级数学教案简短(篇3)

(一)教学目标

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

5.会进行分数与小数的互化。

(二)教材说明和教学建议

教材说明

1.本单元内容的结构及其地位作用。

本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。

五下分数的意义和性质

从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。

首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

2.本单元教材的编写特点。

与原教材相比,本单元教材的主要改进有以下几点。

(1)多侧面地展现了分数的来源。

在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。

五下分数的意义和性质

这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

(2)约数、倍数的有关知识与分数的相关知识结合起来教学。

我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

(4)部分内容作了适当的精简处理或编排调整。

本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

教学建议

1.充分利用教材资源,用好直观手段。

如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

2.及时抽象,在适当的抽象水平上,建构数学概念的意义。

为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

3.揭示知识与方法的内在联系,在理解的基础上掌握方法。

在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

4.这部分内容可以用20课时进行教学。

五年级数学教案简短(篇4)

教学目标:

(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。

(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。

(三)培养学生养成良好的学习习惯,提高学生的计算能力。

教学重点:

掌握整数、小数四则混合运算的运算顺序。

教学难点:

提高学生计算正确率以及约等号的正确使用。

教学过程:

一、复习准备

1.口算

12+0.12=、7.2-0.2=、3.5÷0.35=

2.95+0.05=、5-0.6=、2.8÷0.14=

8÷12.5=、1.2+2.8-3.99=、4×1.72=

3.74+6.26=、4.5×6=、0.25×4÷0.2=

2÷4=、20×0.2=、20.75-9.5=

3.5×8×0.125=

2.提问

(1)我们学过哪几种运算?

(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)

(3)整数四则混合运算的顺序是什么?

二、学习新课

1.学习例1:3.7-2.5+4.6=、3.6×6÷0.9=

(1)思考:以上两题中分别含有什么运算?运算顺序怎样?

(2)学生试算后订正。

3.7-2.5+4.6

=1.2+4.6

=5.8

3.6×6+0.9

=21.6÷0.9

=24

(3)小结运算顺序

①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。

②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)

③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)

2.学习例2:35.6-5×1.73=、6.75+2.52÷1.2=

(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?

(2)学生计算后订正。

(3)小结。

以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?

讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。

(4)练习:先说出运算顺序,再算出得数。

①P37“做一做”;②3.6÷1.2+0.5×5。

思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)

②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)

教师介绍:小括号“()”是公元17世纪由荷兰人吉拉特首先使用。中括号“[]”是公元17世纪首次出现在英国的互里士的著作中。

小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)

3.试做例3:3.6÷(1.2+0.5)×5=、3.69÷[(1.2+0.5)×5]=

(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

(2)学生试做

3.6÷(1.2+0.5)×5

=3.6÷1.7×5

3.6÷[(1.2+0.5)×5]

=3.6÷[1.7×5]

=3.6÷8.5

计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解

在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。

要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)

学生继续计算后,订正

3.6÷(1.2+0.5)×5

=3.6÷1.7×5

≈2.12×5

=10.6

3.6÷[(1.2+0.5)×5]

=3.6÷[1.7×5]

=3.6÷8.5

≈0.42

提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)

4.小结

(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)

(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)

(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

三、巩固反馈

1.P38:做一做。

2.P40:1①②,2①②。

(1)说出运算顺序;

(2)计算并且验算;

(3)订正并小结验算方法。

验算方法:①原式验算;②互逆验算;③交换验算。

3.判断下面各题,哪些是对的,哪些是错的,并说明原因。

(1)0.8-0.8×0.7=0();

(2)1.6+1.4×2=6();

(3)50-3.9+6.1=40();

(4)20÷2.5×4=32();

(5)9.6+0.4-9.6+0.4=0();

(6)4.8×2÷4.8×2=1()。

4.P40:4。先计算填空,再列出综合算式。

5.课后作业:P40:1③④,2③④,3。

五年级数学教案简短(篇5)

教学内容:

课本第39页例1、例2.

教学目标:

1、使学生理解第一级运算和第二级运算的含义。

2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。

3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。

4、培养学生认真严格的态度。

教学过程:

一、复习铺垫

(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)

(2)填空回答。

①在一个算式里,如果只有()或者只有(),要从左往右依次计算。

②在一个算式里,如果有(),又有(),要先做()后做()。

(3)在一个算式里,如果有括号,要先算()。

二、新授

1、出示课题:整数、小数四则混合运算。

2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。

3、教学例1.

(1)板书例1:3.7-2.5+4.6、3.6×6÷0.9

然后设问

①这些算式里有哪些运算?

在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

②这两个算式的运算顺序怎样?

③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。

根据学生回答,改变复习填空①的叙述。

④再概括一点讲,这句话可以怎样叙述?

根据学生回答,改变复习填空①的叙述,出示教材结语。

(2)学生完成例1的计算。

4、教学例2.

(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问

①算式里含有几级运算?

②运算顺序怎样?

根据学生回答,改变复习填空②的叙述,出示教材结语。

(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)

(3)完成例2下面的“做一做”习题。

5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。

三、巩固练习。

1、(1)填空。(出示,学生口答)

①加、减、乘、除四则运算统称为()。

②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。

③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。

2、课本第39页做一做。

四、作业。

练习十第1、4题。

    738440