初中数学圆知识点总结
有关初中数学圆知识点总结3篇
重视小细节和基础能力,对工作和生活起到关键作用。注重学习态度,包括责任感、好奇心和乐观心态。下面就让小编给大家带来初中数学圆知识点总结,希望大家喜欢!
初中数学圆知识点总结1
1、对称性:
a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。
b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。
2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。
3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。
4、四大关系:点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的判定和性质以及有关计算是重点。
5、有关计算问题:有关线段的计算,正多边形的计算,有关扇形及阴影面积的计算,以及圆柱、圆锥侧面展开图的计算。
6、圆中添辅助线一般方法:添与垂径定理相关的辅助线,添与切线有关的辅助线(创造直角的辅助线),添与圆内接四边形相关的辅助线;两圆相交时作公共弦,两圆相切时作分切线,总之添辅助线时,要构造和完善基本图形,切忌破坏图形的完整性。
圆柱体体积公式
圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h
长方体的'体积公式:体积=长×宽×高
如果用a、b、c分别表示长方体的长、宽、高则
长方体体积公式为:V长=abc
正方体的体积公式:体积=棱长×棱长×棱长.
如果用a表示正方体的棱长,则
正方体的体积公式为V正=a·a·a=a?
锥体的体积=底面面积×高÷3,V圆锥=S底×h÷3
台体体积公式:V=[S上+√(S上S下)+S下]h÷3
圆台体积公式:V=(R?+Rr+r?)hπ÷3
球缺体积公式=πh?(3R-h)÷3
球体积公式:V=4πR?/3
棱柱体积公式:V=S底面×h=S直截面×l(l为侧棱长,h为高)
棱台体积:V=〔S1+S2+开根号(S1S2)〕/3h
注:V:体积;S1:上表面积;S2:下表面积;h:高。
圆的周长
圆的周长公式C=2π,r中的π是定义;
圆的面积公式S=πrr,
圆周率是指平面上圆的周长与直径之比。用希腊字母π(读"Pài")表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14)
圆周率—π
▲什么是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什么是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
(背圆周率的口诀)
3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6
山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。
4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7
死珊珊,霸占二妻。救我灵儿吧!不只要救妻,一路救三舅,救三妻。
5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7
我一拎我爸,二拎舅(其实就是撕我舅耳)三拎妻。
8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6
不要溜!司令溜,儿不溜!儿拎爸,久久不溜!
初中数学圆知识点总结2
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的'内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
初中数学圆知识点总结3
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
圆的知识点
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2: 圆的两条平行弦所夹的弧相等。
3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合。
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的'半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
12、①直线L和⊙O相交 dr
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理:圆的切线垂直于经过切点的半径。
15、推论1:经过圆心且垂直于切线的直线必经过切点。
16、推论2:经过切点且垂直于切线的直线必经过圆心。
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
18、圆的外切四边形的两组对边的和相等外角等于内对角。
19、如果两个圆相切,那么切点一定在连心线上。
20、①两圆外离 d>R+r; ②两圆外切 d=R+r;③两圆相交 R-rr);④两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21、定理:相交两圆的连心线垂直平分两圆的公共弦
22、定理:把圆分成n(n≥3):
①依次连结各分点所得的多边形是这个圆的内接正n边形;②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
24、正n边形的每个内角都等于(n-2)×180°/n。
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
26、正n边形的面积Sn=pnrn/2p表示正n边形的周长。
27、正三角形面积√3a/4 a表示边长。
28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29、弧长计算公式:L=n兀R/180
30、扇形面积公式:S扇形=n兀R^2/360=LR/2
31、内公切线长= d-(R-r) 外公切线长= d-(R+r)
32、定理:一条弧所对的圆周角等于它所对的圆心角的一半。
33、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
34、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
35、弧长公式:l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr