三年级上册数学知识点总结
三年级上册数学知识点总结(精选6篇)
知识是人类进步的基石,包括人类在各个领域的实践与经验。知识可以通过教育、经验积累、科学研究等多种方式获取。下面就让小编给大家带来三年级上册数学知识点总结,希望大家喜欢!
三年级上册数学知识点总结1
《四边形》
1、知识点:认识四边形的特征,掌握长方形、正方形的特征
①能正确辨认四边形。
②掌握长方形、正方形的特征。
注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。
2、知识点:在方格纸上画出长方形和正方形
能在方格纸上画出长方形和正方形。
3、知识点:初步认识平行四边形
①能正确辨认平行四边形。
②能感悟到平行四边形易变形的特性。
③能在方格纸上正确画出平行四边形。
注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。
4、知识点:周长的含义
结合具体情境理解周长的含义。
5、知识点:计算长方形和正方形的周长
①能正确计算长方形、正方形等平面图形的周长。
②能运用周长的知识解决实际问题。
6、知识点:长度和周长的估计
在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。
注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。
《测量》
1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米
①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。
②根据具体情境选择恰当的长度单位。
2、知识点:单位间的进率
①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。
②会进行简单的单位换算。
3、知识点:估计、测量物体的长度
能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。
4、知识点:质量单位吨及1吨
①认识质量单位“吨”,建立1吨的质量观念。
②能根据具体情境选择恰当的质量单位。
5、知识点:1吨=1000千克
知道1吨=1000千克,并会进行吨与千克的单位换算。
三年级上册数学知识点总结2
第一单元
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
第二、四单元
1、的几位数和最小的几位数
的一位数是9,最小的一位数是0.
的二位数是99,最小的二位数是10
的三位数是999,最小的三位数是100
的四位数是9999,最小的四位数是1000
的五位数是99999,最小的五位数是10000
的三位数比最小的四位数小1。
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0 4则用四舍法,如果是5 9就用五入法的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)特别注意:中间是0的退位减法,例如:309 189;1000 428等
8、⑴加法公式:加数+另一个加数=和加法的验算:
①交换两个加数的位置再算一遍。另一个加数+加数=和。
②和另一个加数=加数
⑵减法公式:被减数减数=差
减法的验算:
①差+减数=被减数
②减数+差=被减数
③被减数差=减数
特别注意:验算时“验算”别忘了写!!!
第三单元
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:
1米=10分米,1分米=10厘米,
1厘米=10毫米,10分米=1米,
10厘米=1分米,10毫米=1厘米,
②进率是100:
1米=100厘米,1分米=100毫米,
100厘米=1米,100毫米=1分米
③进率是1000:
1千米=1000米,1公里==1000米,
1000米=1千米,1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克
1000千克=1吨1000克=1千克
第五单元
倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
3、求一个数的几倍是多少用乘法;这个数×倍数=这个数的几倍
第六单元
多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0.
3、①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950.
所以:387×5≈1950
第七单元
长方形和正方形
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:
①长方形的长=周长÷2宽
②长方形的宽=周长÷2长
正方形的周长=边长×4
变式:正方形的边长=周长÷4
第八单元
分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
分子表示:其中的几份
分母表示:平均分成几份
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4,比较大小的方法:
①当分子相同时,分母越小分数越大,分母越大分数越小。
②当分母相同时,分子大的分数就大,分子小的分数就小。
5、分数加减法:
①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。
②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)
6,求一个数是另一个数的几分之几是多少的计算方法:
例:把12个圆的3/4有个圆;
分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。
人教版三年级数学学习方法
1、科学的预习方法
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
2、科学的听课方式
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
3、科学的记录笔记
记问题将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。
记方法勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
人教版三年级数学学习技巧
回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
三年级上册数学知识点总结3
知识点:
1、不可能和一定’都表示确定的现象。‘可能’表示不确定的现象。
2、请用“一定、可能、不可能”来说一说。
①一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……
②可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……
③不可能:太阳不可能从西边升起;地球不可能绕着月亮转;鲤鱼不可能在陆地上生活;
我不可能从出生到现在没吃过一点东西;空中不可能盖楼房;我不可能比姐姐大……
练习题:
一、口算(18分)
52+48=() 1000-700=() 45-45=()
35+17=() 240+30=() 412+369=()
900-200=() 42÷7=() 990-90=()
170-20=() 5×5=() 880+20=()
56÷8=() 63+37=() 30÷6=()
20÷4=() 90+70=() 7×2=()
3×8=() 910-600=() 630+300=()
7×6=() 120-80=() 650-400=()
630-20=() 28÷7=() 16÷8=()
290+90=() 4×9=() 40÷5=()
307+622=() 8×8=() 3×9=()
440-40=() 360-300=() 4×7=()
81÷9=() 300+400=() 900-800=()
10×7=() 70+40=() 450+30=()
54÷6=() 800-200=() 120+800=()
740-200=() 72÷9=() 800-200=()
480-400=() 63-23=() 720+80=()
560-50=() 63÷9=() 810-100=()
130+245=() 7×7=() 620-80=()
815+194=() 910+210=() 460+540=()
二、想一想,在一定发生的事后面画“√”,可能发生的事后面画“△”,一定不能发生的事后面画“×”。(12分)
(1)太阳从东边升起。()
(2)今天下雨,明天出太阳。()
(3)在装满白球的盒子里摸出一个球,它是红色的。()
(4)书放在文具盒的东面,那么文具盒在书的西面。()
(5)地球绕着月球转。()
(6)抛一元硬币,正面向上。()
三、选一选(15分)
1、有一个盒子,里面装着4个白球和5个黄球,任意从盒子中取出一个,()的`可能性较大。
A、白球 B、蓝球 C、黄球
2、把一些白色围棋子放在书包里,从中任意摸出一个,()是白棋子。
A、可能 B、一定 C、不可能
3、从8个红色的的玻璃球和2个的玻璃球中任意摸出一个,找到()色的玻璃球可能性更大些。
A、红色 B、蓝色 C
4、从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到()玻璃球可能性更小一些。
A、白色 B、蓝色 C、红色
5、把3个白球和5个红球放在盒子里,任意摸出一个,()是蓝色的。
A、可能B、一定C、不可能
四、算一算竖式计算(20分)
【第1-4小题各3分,第5、6小题各4分。】
(1)674-253
(2)302×8
(3)2600×4
(4)907—790
(5)746+219
(6)200-183
验算:
验算:
五、应用题(23分)
1、一共有57棵树苗,每行种8棵。可以种几行?还剩几棵?(5分)
2、一共17人,如果每组3人,可以分成几组?还剩几人?(4分)
3、小明去旅游,这次旅游买火车票一共花了多少钱?(5分)
4、每台机器重900千克,一辆载重量4吨的大客车要运这些机器,一次最多能放几台?(5分)
5、图书馆原来有科技书674本,现有多少本?(4分)
三年级上册数学知识点总结4
知识点:
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
②1与分数相减:1可以看作是分子分母相同的分数。
练习题:
一、填空题。
1、把一块月饼平均分成2份,每份是这块月饼的一半,也就是它的()分之(),写作(—)。
2、把正方形纸平均分成4份,每份是这个正方形的()分之(),写作(—)。
3、把1分米平均分成10份,每份是1分米的()分之(),写作(—)。3份是它的(—)。
4、2/5是把一张纸平均分成()份,表示这样的()份。3/5是把一张纸平均分成()份,表示这样的()份。2/5和3/5都是把同样的一张纸平均分成了5份,这样的2份显然比3份(),所以2/5<3/5。同样道理,5/6比2/6()。
5、4/5里有()个1/5,2/3里有()个1/3。
6、7个1/10是(—),4个1/7是(—)。
7、1/8是1个八分之一,2/8是2个八分之一,1/8+2/8也就是1个1/8加上2个1/8,一共是3个1/8,也就是(—)。
8、一张纸平均分成8份,每份是它的()(),6份是()个()(),就是它的()分之(),写作()。
9、58这个分数中,()是分子,()是分母,读作()。
10、一本书有21页,平均每天看这本书的3页,占全书的()
11、妈妈买了12个苹果,给哥哥7个,给妹妹5个。哥哥得这些苹果的()(),妹妹得这些苹果的()()。
12、59是5个()()37里面有()个()1-()10=610
8个19是()()1里面有()个1525+()<1
二、解决问题
1、东东看一本故事书,第一天看了全书的25,剩下的第二天看完,第二天看了这本书的几分之几?
2、老师加工一批机器零件,第一天完成了任务的715,第二天完成了任务的315,两天共完成了这项任务的几分之几?
3、一块蛋糕,小鑫吃掉了它的36,小淼吃掉了它的26,谁吃得多?一共吃掉了蛋糕的几分之几?
4、修路队要修一条公路,已经修好了这条公路的712,还剩几分之几未修好?
5、一张长方形的纸它的19涂红色,它的59蓝色,没涂色部分占这张纸的几分之几?
三年级上册数学知识点总结5
第一单元
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
第二、四单元
1、的几位数和最小的几位数
的一位数是9,最小的一位数是0。
的二位数是99,最小的二位数是10
的三位数是999,最小的三位数是100
的四位数是9999,最小的四位数是1000
的五位数是99999,最小的五位数是10000
的三位数比最小的四位数小1。
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。
的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
特别注意:中间是0的退位减法,例如:309—189;1000—428等
8、
⑴加法公式:加数+另一个加数=和
加法的验算:
①交换两个加数的位置再算一遍。
另一个加数+加数=和
②和—另一个加数=加数
⑵减法公式:被减数—减数=差
减法的验算:
①差+减数=被减数
②减数+差=被减数
③被减数—差=减数
特别注意:验算时“验算”别忘了写!!!
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。1吨=1000千克1千克=1000克。1000千克=1吨1000克=1千克
第五单元倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
3、求一个数的几倍是多少用乘法;这个数×倍数=这个数的几倍
第六单元多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。
所以:387×5≈1950
第七单元长方形和正方形
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2—宽
②长方形的宽=周长÷2—长
正方形的周长=边长×4
变式:正方形的边长=周长÷4
第八单元分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
分子表示:其中的几份
分母表示:平均分成几份
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4,比较大小的方法:
①当分子相同时,分母越小分数越大,分母越大分数越小。
②当分母相同时,分子大的分数就大,分子小的分数就小。
5、分数加减法:
①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。
②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)
6,求一个数是另一个数的几分之几是多少的计算方法:
例:把12个圆的3/4有()个圆;
分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
3、三位数乘一位数:积有可能是三位数,也有可能是四位数。
4、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
5、一个因数中间有0的乘法:因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
7、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
8、减法的验算方法:
①用被减数减去差,看结果是不是等于减数
②用差加减数,看结果是不是等于被减数。
9、加法的验算方法:
①交换两个加数的位置再算一遍。
②用和减一个加数,看结果是不是等于另一个加数。
三年级上册数学知识点总结6
小学三年级要重视和加强发展学生“空间关系”的知觉能力。数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。下面给大家带来关于人教版数学三年级上册知识点归纳总结,希望对你们有所帮助。
第一单元时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)
2、每两个相邻的时间单位之间的进率是60
1时=60分60分=1时1分=60秒60秒=1分
半时=30分30分=半时
3、(1)计量很短的时间,常用比分更小的单位——秒。
(2)计算一段时间,可以用结束的时刻减去开始的时刻。
经过时间=结束时刻—开始时刻。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
第二、四单元万以内的加法和减法
1、笔算加减法时:(1)相同数位要对齐;(2)从个位算起。(3)哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10;如果前一位是0,则再从前一位退1。
2、两个三位数相加的和:可能是三位数,也有可能是四位数。
3、加法公式:加数+加数=和
加法的验算:①交换两个加数的位置再算一遍。
②加数=和-另一个加数
4、减法公式:被减数-减数=差
减法的验算:①被减数=差+减数②减数=被减数-差
5、求一个数的近似数:
看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
长度单位从大到小:千米>米>分米>厘米>毫米
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
①进率是10:1米=10分米, 1分米=10厘米, 1厘米=10毫米,
10分米=1米, 10厘米=1分米, 10毫米=1厘米,
②进率是100:1米=100厘米, 100厘米=1米,
1分米=100毫米, 100毫米=1分米
③进率是1000:1千米=1000米, 1公里=1000米,
1000米=1千米, 1000米= 1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000。
1吨=1000千克1000千克= 1吨
1千克=1000克1000克=1千克
7、单位换算:小到大除,大到小乘。
第五单元倍的认识
求一个数是另一个数的几倍用除法:“是前”除以“是后”。
求一个数的几倍是多少用乘法。
第六单元多位数乘一位数
1、多位数乘一位数的笔算方法:(1)相同数位对齐,(2)从个位乘起.(用一位数分别去乘多位数每一位上的数,与哪一位相乘,积就写在哪一位下面。)(3)哪一位上的数相乘满几十,就向前一位进几,(4)搬答案。
2、一个因数中间有0的乘法:
0和任何数相乘都得0
3、一个因数末尾有0的乘法的简便计算:
(1)先算0前面的数(2)添0
1和任何不是0的数相乘还得原来的数。
三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:总价=单价×数量
单价=总价÷数量数量=总价÷单价
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,一般都是求近似数,用估算。→(≈)
第七单元长方形和正方形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,对边相等,四个角都是直角。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:对边平行且相等、对角相等。
7、封闭图形一周的长度,就是它的周长。
8、公式:长方形的周长=(长+宽)×2
①长方形的长=周长÷2-宽②长方形的宽=周长÷2-长
①正方形的周长=边长×4 ②正方形的边长=周长÷4,
第八单元分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4、比较大小的方法:
①分子相同,看分母,分母越大,分数反而越小,分母越小,分数反而越大。
②分母相同,看分子,分子越大,分数越大,分子越小,分数越小。
5、同分母的分数加、减法的计算方法:分母不变,分子相加、减。
1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
6、求一个数是另一个数的几分之几是多少的计算方法:
先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
第九单元数学广角——集合
会用集合思想解决实际问题。