四年级数学免费课件大全
四年级数学免费课件大全5篇
四年级的数学课件如何写。教学设计是老师对每一课时做的特定教学方式的规划,不是只照着课本去念去学,它包含了老师的心血和希望在里面。下面小编给大家带来关于四年级数学免费课件大全,希望会对大家的工作与学习有所帮助。
四年级数学免费课件大全【篇1】
教学目标:
认知目标
1.知道角的计量单位是“度”,符号是“°”。
2.掌握3个特殊角“直角、平角、周角”。
3.掌握“锐角、直角、钝角、平角、周角”之间的关系。
能力目标
让学生经历观察、操作的主动探索过程。
情感目标
让学生享受学习的快乐,分享成功的喜悦。
教学重点:
理解“周角、平角、直角”的含义。
教学难点:
理解“旋转成角”。
教学准备:
多媒体课件及量角器。
教学过程:
一、出示课题
1.情景导入角的计量单位。(课件演示)
2.“度”是角的计量单位,读作“度”,用符号“°”标示。
3.1度可以简写成“1°”
4.出示37°,“37”表示数值,是“量数”,“°”是“计量单位”。
5.作为计量单位“度”,生活中的应用范围很广:水沸腾时为100度,结冰时为0度;正常体温是摄氏37度,高于它就是发烧了;一盏100瓦的灯,连续开10小时,用电1千瓦小时,我们常称作1度电;近视眼患者佩戴300度的眼镜;某种白酒38度;上海位于北纬32度、东经122度,等等。
说明:通过课件的演示和生活中实例的介绍,生动的引导角的度量单位“度”,体会数学与生活的联系,激发学生的学习兴趣。
二、学习直角、平角、周角的定义。
1.请你仔细地读读上面3句话,你觉得有什么问题。
2.出示P68、P69出现的定义
i.一点(O)和从这一点(O)出发的两条射线(OA和OB)所组成的图形叫做角;
ii.直角:一条射线绕它的端点旋转四分之一周,所成的角叫做直角;
iii.一条射线绕它的端点旋转半周(二分之一周),所成的角叫做平角;
iv.一条射线绕它的端点旋转一周,所成的角叫做周角;
3.理解“旋转、端点、射线”。
v.端点——一点(O)、曾经叫做“一个点、顶点”
vi.旋转——利用圆规画圆,体会旋转,绕圆心旋转;
vii.射线——没有尽头,也就无法表示长度,所以角度与射线的长度无关;
viii.重新定义锐角和钝角
ix.锐角:小于直角的角叫做锐角。(与以前说法一致)
x.钝角:大于直角而小于平角的角叫做钝角。(重点理解“小于平角”)
说明:通过对概念中关键词的理解,多媒体课件的演示,让学生认识了直角、平角和周角。学生学习的过程变得具体化和形象化。
三、学习锐角、直角、钝角、平角、周角之间的关系。
1.锐角<直角<钝角<平角<周角。
2.1直角=90°、1平角=180°、1周角=360°;
3.2直角=1平角、2平角=1周角、4直角=1周角;
说明:通过对角之间关系的整理,让学生能够熟知不同类型的角。
四、小练习
1.下列这些是角是锐角、直角、钝角、平角还是周角?
∠=78°∠=180°∠=123°∠=360°∠=20°∠=90°
2.填空
一个周角=_____个平角=______个直角
3.填“<”、“>”或者“=”。
锐角〇90°90°〇钝角〇180°
说明:通过不同层次的练习,让学生对角的分类有更明确的认识。
五、总结
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
四年级数学免费课件大全【篇2】
设计理念:
创设情境,激发学学生参与探究的兴趣和,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题,在建构、运用过程中渗透数学思想和方法。
教学目标:
1、经历探索的过程,发现商不变的规律。
2、能运用商不变的规律,进行除法的简便计算。
3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,培养学生爱数学的情感。
教学重点:
理解并归纳出商不变的规律。
教学难点:
会初步运用商不变的规律进行一些简便计算。
教具学具:
小黑板、计算题卡。
教学过程:
一、创设情境,激发兴趣。
师:同学们注意了,我讲一个故事给你们听。你们看过《西游记》吗?里面的内容很精彩,老师知道同学们都很喜欢里面的孙悟空,今天老师就给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看他的孩儿们,它给孩儿们带来礼物——桃子,他对身边的两只猴子说:“把8个桃子平均分给你们2只猴子吧!”这两只猴子连连摇头:“太少了!太少了!”外面的猴子听说后又进来一些猴子。孙悟空就说:“那好吧,把80个桃子平均分给20只猴子,怎么样?”猴子们得寸进尺,挠挠头皮,试探地说:“大王,再多点行不行啊?”所有的猴子都听到分桃子了,一起跑到孙悟空身边。孙悟空一拍胸脯,显示出慷慨大度的样子:“那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。
[设计意思:通过学生喜爱的故事,引入新课,激发学生投入学习的兴趣,也给学生创设一个宽松的课堂氛围,并引导学生在故事情境中发现问题,提出问题,从而为解决问题做好铺垫。]
二、探究规律,发现规律。
㈠师:同学们,小猴子和孙悟空都笑了,谁的笑是聪明的一笑,为什么?
学生思考后回答。
(预设)生1:……猴王的笑是聪明的一笑,桃子的总数与猴子的总只数变了,但每只猴子分到的桃子个数没有变。
生2:……猴王的笑是聪明的一笑,因为猴王把小猴子给骗了,每只小猴子还是分到4个桃子。
师:你(们)是怎样看出来的?从哪儿看出来的?
(预设)生:……(计算的)
师:能列出算式吧吗?
引导学生列出算式,并结合板书把算式补充完整。
板书①8÷2=4、②80÷20=4、③800÷200=4
㈡1、这些都是什么运算的算式,第一竖的数叫什么?第二竖的数又叫什么?第三竖的数又叫什么
2、师:请同学们仔细观察这组算式,你发现了什么?
〔预设意图:这样预设,给学生创设发挥的空间,要比直接引导学生从上往下或从下往上观察预留的思维空间要大,课堂上观察学生反应情况,学生发现不了,再逐步引导。〕
生独立观察思考。
师:你有重要发现吗?把你的重要发现说一说好吗?
小组交流,师巡视辅导。
全班交流汇报。
生:我发现它们的得数都是4,商不变。
师:她发现一个非常重要的数学现象,商不变。(板书:商不变)
师:这节课,我们就来研究“商不变的规律”。(板书课题)
师:商不变,谁发生了变化?怎样变的?
(预设)生1:被除数和除数同时乘上了10(扩大10倍)。
师:这个同学说了一个很好的词,你们知道是什么词吗?“同时”是什么意思?你能说一说吗?
生:……
师:“同时”指被除数和除数都扩大了10倍。(而不是一个扩大,一个缩小,或一个扩大,一个不变。)
(预设)生2:②式和①式比较……
师:他用一个非常好的方法发现规律,用两个算式进行比较,这是多好的学习方法呀!你能像他这样去发现其它算式的一些规律吗?
生:……
师:同学们发现那么多的规律,真聪明!能用一句话概括你发现的规律吗?
生:……
师:被除数和除数,同时乘10,100,1000,商不变。(板书)
师:同学们刚才是从上往下看,发现了这么重要的规律,那么从下往上看,有规律吗?
生汇报,师板书。
师:被除数和除数同时除以10、100、1000商不变
师:是不是只有被除数和除数同时乘或除以10,100,1000,商不变呢?那你能验证吗?请你多写几个商是4的除法算式,看看有没有这个规律。
生写算式,师出示
师:请同学们仔细观察这组算式,符合这个规律吗?
生观察,汇报。
师引导:看来这里扩大和缩小的不一定是整十整百,整千的位数,也可以是1倍、2倍、3倍、4倍等,那么我们就要把10倍、100倍……改成“相同的倍数”了。
师在板书上改写。
师:这里所有数都可以吗?
(预设)生:……(零除外)
师:为什么要零除外?
生:因为零乘任何数都得零,零不能当除数。
师:我们发现的就是重要的“商不变的规律”,这个规律在所有除法中都适用吗?
师:请请同们列一组算式验证一下。
生验证,指名汇报。
师小结:看来这个规律对所有除法都适用。
[设计意图:这一环节通过学生自主探索,小组合作,全班交流三个层次,引导学生逐步构建“商不变的规律”这一数学知识的模型,让学生经历“发现----探索----构建”的学习过程,培养学生学数学的方法。]
三、应用规律,拓展延伸。
师:同学们对这一规律理解了吗?智慧老爷爷想考考你到底掌握的怎么样?可以吗?
1、请你计算。
8000÷2000=
80……0÷20……0=、在板书下补充
100个0、100个0
生做过后师:你们是一部高级电脑,比普通电脑快多了,看来这个规律的作用太大了,这么大的数同学们都能计算出来。
2、P75T1板书到小黑板。
3、从上到下,先算出每组题中第一题的商,然后很快地写出下面两组的商。
72÷9=36÷3=80÷4=720÷90=360÷30=800÷40=7200÷900=3600÷300=8000÷400=
4、判断,下面的计算对吗?为什么不对?
14÷2=715÷3=5
(14×2)÷(2÷2)=7()、150÷30=5()
(14×5)÷(2×3)=7()、150÷30=50()
(14×0)÷(2×0)=7()、1500÷300=500()5、比赛。
比一比,在1分钟内看谁写出相等的除法算式最多。赛后,让第1名同学说说取胜秘诀。
6、P75页,观察与思考
感受规律的作用真大(可以使计算简便)。
[设计意图:设计不同层次的变式练习,突破难点,让学生进一步能理解运用所探索的规律,以达到灵活运用知识解决问题,培养学生应用意识和能力。]
四、总结全课,概括梳理。
师:这节课,你学会了什么,有什么新发现?数学有趣吗?
师总结:通过同学们的探索,发出了那么重要“商不变规律”,并且那么有用,同学们真了不起!下节课,你们的老师将带着你们把它运用到竖式计算中,还可以使竖式计算简便呢!
五、作业
列举出几组数学算式,说一说商不变的规律。
板书设计:
商不变的规律
①8÷2=4、6÷3=2
②80÷20=4、24÷12=2
③800÷200=4、48÷24=2
8000÷2000=4、120÷60=2
80……0÷20……0=4
100个0、100个0被除数和除数同时扩大或缩小相同的倍数,商不变。
四年级数学免费课件大全【篇3】
教学内容:
北师大版小学数学四年级上册第74页至75页。
教材分析:
这个教材内容是在学生经历了“有趣的算式”、“乘法的结合律”、“乘法的分配律”三个探索与发现的学习过程后,教材再次以“探索与发现”为主题,其宗旨是让学生经历观察、对比被除数与除数的变化及对应的商的关系,从而发现“商不变的规律”的学习过程,感受探索与发现的成功与快乐,进一步掌握探索与发现的方法;并使学生在深刻理解了“商不变的规律”的内涵的基础上,引导学生运用知识解决计算中和实际中的问题。
教学目标:
1.知识与技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
2.过程与方法:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,发现总结规律。
3.情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
教学重点:
使学生理解并归纳出商不变的规律。
教学难点:
使学生会初步运用商不变的规律进行一些简便计算。
教学过程:
一、创设情境,激发兴趣。
师:同学们,喜欢听故事吗?今天老师给你们讲一个故事。(课件演示故事内容)请看大屏幕猴子分桃花果山风景秀丽,气候宜人,那儿住着一大群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。”小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显出慷慨的样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满意了吧。”小猴子笑了,猴王也笑了。(我看大家也笑了)
师:为什么小猴子笑了,猴王也笑了?
(让更多的小猴都吃到了桃子。师:你心地真好!真善良!)
生1:因为猴子吃到了更多的桃子了。
师:其他同学认为呢?
生2:因为无论怎样分,每个猴子吃到的个数都一样,都是4个。
师:是这样的吗?你是怎么知道的呢?
生:8÷2=4、80÷20=4、800÷200=4、8000÷2000=4
师:哦,原来是这样,你真聪明!为什么每只猴子每次分到的桃子都一样呢?这节课我们就一起来研究这个问题。
二、探索规律,概括性质。
(一)观察算式,发现规律。
(1)课件出示
8÷2=4
80÷20=4
800÷200=4
8000÷2000=4
(2)观察讨论
A、从上往下看,被除数和除数有什么变化?商有什么变化?
(学生观察讨论后,代表汇报结论,师板书:被除数和除数都乘一个数,商不变。)
B、从下往上看,被除数和除数有什么变化?商有什么变化?
(学生观察思考,个别汇报结论,师板书:被除数和除数都除以一个数,商不变。)
C、再看第二个例子,是不是也这样呢?
D、你能举些例子说明你的发现吗?在老师发给你们的表格中写出一个例子(师巡视,收上展示)
被除数
除数
商、E、要使商不变,被除数和除数都乘0或除以0,可以吗?为什么?
(生可同桌讨论,再汇报,举例说明)
师:真棒,能把你的发现用一句话说给大家听听吗?
(学生尝试归纳发现的规律,师板书规律)
被除数和除数同时乘或除以相同的数(零除外),商不变。
(二)教师小结,揭示课题:这就是商不变的规律(板书课题)
三、反馈练习,深化认识。
1、填数。
20÷5=4
(20×6)÷(5×□)=4
(20÷□)÷(5÷5)=4
(20×□)÷(5×8)=4
2、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。
⑴(48×5)÷(12×5)=4()
⑵(48×3)÷(12×4)=4()
⑶(48÷6)÷(12×6)=4()
⑷(48÷4)÷(12÷4)=4()
3、抢答。
⑴在一道除法算式里,如果被除数除以5,除数也除以5,商()。
⑵在一道除法算式里,如果被除数乘10,要使商不变,除数()。
⑶在一道除法算式里,如果除数除以100,要使商不变,被除数()。
观察与思考
下面是淘气计算“400÷25的过程,仔细观察计算的每一步,你受到什么启发?
400÷25=(400×4)÷(25×4)=1600÷100=16
请你说说这样做的好处:看到25想到4,把除数变成100,除以100就是把被除数去掉两个0,这样便于简便计算。
你能用这个方法计算下面各题吗?
150÷25、800÷25
2000÷125、9000÷125
四、课堂总结。
谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)
五、作业布置。
1、从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。
72÷9=、36÷3=、80÷4=、720÷90=、360÷30=、800÷40=、7200÷900=、3600÷300=、8000÷400=
2、填空(在□中填数,在○中填运算符号)
200÷40=5
(200×4)÷(40×□)=5、(200÷2)÷(40÷□)=5
(200×3)÷(40○□)=5、(200÷4)÷(40○□)=5
(200×□)÷(40○□)=5
四年级数学免费课件大全【篇4】
教学目标
1、认识十万、百万、千万、亿和十亿等计数单位及相应的数位。
2、初步会读一般的多位数,并说出数的组成。(中间不含0的多位数)
3、能让学生感受到数学与日常生活的密切联系。
教学重难点
能正确读出大数,说出数的组成
能将大数正确的分级
教学工具
教学课件
教学过程
一、新课导入
情景引入
1、你知道吗?上海的一些区县的人口数(年)
南汇699119闸北区707869浦东新区1766946
2、揭示课题:今天我们就来认识这些大数。
二、新课探究:
探究一:认识十进制计数法。
1、2000年我国进行了第五次全国人口普查,有谁知道,我国目前的总人口呢?
请你读一读:1295330000
1)我们曾经认识了哪些数位?它们相对应计数单位是什么?
生:我们认识了个位、十位、百位、千位、万位、……它们相对应的计数单位是个、十、百、千、万、……
小结:正如我们所说的个、十、百、千、万、还有十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。
2)一万一万的数,10个一万是多少?计数单位又是什么呢?
生:10个一万是十万,计数单位是十万。
3)10个十万呢?10个一百万呢?……
生1:10个十万是百万,计数单位是百万。
生2:10个一百万是一千万,计数单位是千万。
生3:10个一千万是亿,计数单位是亿。
4)每相邻两个计数单位之间的进率是几?
生:每相邻两个计数单位之间的进率都是10。
师:因为每相邻两个计数单位之间的进率都是10。所以叫十进制计数法。
探究二:介绍四位分级法。
1)为了读数方便,按照我国习惯,把数位进行了分级。
很久以前,我国的劳动人民就创造出了用四位一级的方法计数,即从右起每四位为一级。个、十、百、千是个级,个级表示多少“一”;万、十万、百万、千万是万级,万级表示多少个“万”;亿、十亿、百亿、千亿是亿级,亿级表示多少个“亿”。
2)我们来看上海的人口:16737700,这个数分为几级呢?万级上表示多少?个级呢?
16737700是由()个万和()个一组成的。
生:16737700,这个数分为二级
万级上表示1673个万,个级上表示7700个一。
三、课内练习:
练习一填空
(1)10个一万是(),10个一百万是()。
(2)10个一亿是(),10个十亿是()。
(3)一百万里有10个(),有100个()。
练习二
(1)2100350里有()个一。
(2)1023003405里有()个亿()个万和()个一。
课后小结
四、本课小结
在读大数时,利用数位分级的方法可以使我们更准更快的读数。
课后习题
五、课后作业
读读第10页中北京市、河南省、台湾省、浙江省、西藏自治区、澳门特别行政区等地的人口数。
四年级数学免费课件大全【篇5】
教学目标:
1.了解数的产生,认识然数。认识亿级的数和计数单位“十亿”“百亿”“千亿”,掌握整数数位顺序表,认识十进制计数法。
2.在经历数的产生过程中,感受“一一对应”的思想和“实践第一”的辩证唯物主义观点。
3.使学生了解古老的数学文化,培养学生学习数学的兴趣,并渗透“生活中处处有数学”的思想。
教学重点:数的产生过程。
教学难点:理解十进制计数法的意义和十进位值制的价值。
教学准备:课件
教学过程:
一、数的产生
(一)导入
1.师:我们身边有很多数,找一找。(人数、男生数、女生数、年龄、身高、体
2.师:我们的生活离不开数,可是数的产生也经历了一个漫长的过程。
(二)了解古代计数方法
1.师:你知道远古时代的人是以什么为生吗?(打猎)对,他们以打猎为生,每次捕到猎物或捞到鱼需要知道捕获的数量,他们也需要数数,记录数的多少,但和那时的方法和现在不同,你知道他们用的是什么方法吗?(摆石子、刻痕、结绳计数)
2.课件出示:图片
师:比如,出去放牧时,每放出一只羊,就摆一个小石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。在木头上刻道来计捕鱼的条数的道理也是一样。刻道计数和结绳计数也是如此。
3.课件出示:
师:这是我国挖掘出来的“甲骨文”上的“数”字,这个字就源于结绳记事。
4.师:大家想,随着人们捕猎技术的进步,捕猎工具的发展,打到的猎物就会越来越多,相应的计数时,摆的石子就会越来越多,还是很不方便。怎么办?
【设计意图:通过介绍数的产生,感受“一一对应”的思想,体会古代计数方法的不便,产生对数字的需求。】
(三)符号记数
1.师:随着语言的发展,逐渐出现了数词。以后又随着文字的发展,逐渐发明了一些记数的符号,也就是最初的数字。
2.通过介绍古埃及人记数符号,揭示计数法就是表示计数单位的个数,体会没有位值带来的不便。
(1)课件出示:
师:这是古埃及人设计的计数单位。
(2)课件出示:
师:看看这个数用到了哪些计数单位,是多少?(4217)你是怎么想的。
(3)师:要想知道这个数表示多少,就必须看清有什么计数单位和有几个这样的计数单位。
(4)师:你能用古埃及的计数方法表示出太阳的直径1389000千米吗?试一试。
(5)课件出示:
(6)师:通过自己的尝试,你有什么感觉?(麻烦)
(7)师:请你想一想,这种计数方法为什么会这么麻烦?(每个计数单位都要用不同的符号,表示数时,有几个这样的计数单位就要画几次)
3.介绍阿拉伯数字
(1)课件出示:
(2)师:由于每个国家的文化背景不同,所以各国的数字也不一样。随着社会的发展,人们交流的增多,数字不同很不方便,就需要有统一的数字。这就是“阿拉伯数字”。阿拉伯数字是谁发明的?
公元八世纪前后,印度发明的数字传入了阿拉伯,在公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫“阿拉伯数字”。
【设计意图:在用古埃及记数符号表示太阳直径的过程中,体会没有位置制时记数的麻烦。通过介绍其他各国的记数符号,体会同意数字的必要性。】
二、认识自然数及新的计数单位等,整理数位顺序表,掌握十进制计数法。
(一)认识自然数
1.师:用这10个数字能表示多少数?
2.师:表示物体个数的1、2、3、4、5、6、7、8、9、10、11…都是自然数,一个物体也没有,用0表示,0也是自然数。所有的自然数都是整数。
3.看教材第17页
4.师:通过看书,你还了解到了自然数的哪些知识。
(二)十进制计数法的原则,体会位值制的价值。
1.师:为什么仅仅这10个数字就能表示出许许多多的数呢?比如:999,都是9,它们表示的意思一样吗?(9在不同的数位)
2.师:对,因为9在不同的位置,在右边表示9个一,在中间表示9个十,在左边9个百。同样的数字在不同的位置表示的大小就不同,这样不用发明那么多的符号了,记数也不用那么麻烦了。(课件演示)
3.师:如果再加1个石子,右边的9就达到10个,就可以放到中间,中间又够10组,就可以放到更高的位置,同样再够10组,就要再往左进一位。(课件演示)
4.师:这就是人类的进步,能用位置来区分计数单位的不同,它使记数变得简单。
【设计意图:以“999”为例,认识位值制,感受它给计数带来的便利。了解十进制计数法的原则,即“满十进一”。】
(三)认识新的计数单位,数位、数级,整理数位顺序表
1.师:这里的位置就是我们现在所说的“数位”,我们已经学过了哪些数位?它们的计数单位分别是什么?
2.师:你还能继续说出新的计数单位吗?它们所在的数位又叫什么呢?还有更高的吗?
3.师:这些计数单位之间有什么关系?每相邻两个计数单位间的进率是十,这种计数方法叫作十进制计数法。
4.师:我国习惯从个位起,每四位一级,分别是哪几个数级?
课件出示:数位顺序表
【设计意图:引导学生利用类推迁移规律认识新的计数单位、数位及数级,掌握数位顺序表和十进制计数法。】
三、知识运用
1.教材第22页第1题。
2.教材第22页第2题。