数学四年级下册课件如何写
数学四年级下册课件如何写6篇
四年级数学的课件很重要的。教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,下面小编给大家带来关于数学四年级下册课件如何写,希望会对大家的工作与学习有所帮助。
数学四年级下册课件如何写篇1
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11、12×77+8×77
(12+8)×77、36×25+4×25
(58+12)×14、27×21+27×29
27×(21+29)、11×(58+49)
(36×4)×25、58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=()×()
五、布置作业
p.57第2、4、5、6题
数学四年级下册课件如何写篇2
教学目标:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
重点难点:
1、指导探索乘法分配律。
2、发现并归纳乘法分配律。
方法指导:
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
教学过程:
具体内容
一、激趣导入
(约3分钟)
创设情境,提出问题
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
二、自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
合作交流
(约10分钟)
2、汇报交流
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。)
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书
一套×4=4件上衣+4条裤子
(225+75)×4=225×4+75×4
(225+125)×4=225×4+125×4
(175+75)×4=175×4+75×4
(175+125)×4=175×4+125×4
精讲点拨
(约8分钟)
(二)观察比较、猜测验证
1、观察比较
2、提出猜想。
师:观察上面的等式,左右两边的算式什么变了什么没变?
你们有什么发现?
3、举例验证。
让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?
学生汇报,教师根据汇报板书。
(三)总结规律,概括模型
1、总结规律
师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)
师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?
2、用字母表示
师:用字母如何表示乘法分配律?
三、测评总结(约12分钟)
巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)×3=()×3+()×3
15×(40+8)=15×()+15×()
78×20+22×20=(+)×20
66×28+66×32+66×40=(++)×40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。
2、火眼金睛辨对错
56×(19+28)=56×19+56×28
(18+15)×26=18×15+26×15
(11×25)×4=11×4+25×4
(45-5)×14=45×14-5×14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。
3、用乘法分配律计算下面各题。
(40+4)×25、39×8+39×6-4×39
4、拓展提高
你能用乘法分配律解决这道题吗?
86×101
数学四年级下册课件如何写篇3
教学内容:
教材分析:
《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学“空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。
学生分析:
从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。
教学目标:
1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学准备:
多媒体课件、实物投影、小棒若干。
教学过程:
一、导入
1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?
(生:三角形)。
师:什么是三角形?
(生:由三条线段首尾相接围成的平面图行就是三角形。)
师:围成三角形的三条线段是三角形的什么?
(生:边。)
2、解释课题
今天咱们就来共同研究三角形的三条边之间有什么奥秘。
二、探究活动
1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。
①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?
师:是不是只要给你3根小棒你就一定能围成一个三角形?
师:怎么验证咱们说得对不对呢?
(生:实际动手摆一摆、围一围。)
师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。
②课件出示“活动要求”。
学生自读活动要求,师:清楚活动要求了吗?开始吧!。
③学生动手摆一摆并完成活动记录表。
④汇报活动结果。
师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)
师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)
2、进一步探究怎样的3根小棒能摆成三角形。
①课件分别演示4组小棒摆三角形的过程。
②两根短小棒长度之后小于长小棒时摆不成三角形。
出示第3组小棒(2,3,6)。
师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)
师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)
师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)
师板书:2+3<6
师:这3根小棒能摆成三角形吗?(1,2,52,2,8)
师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?
归纳:两根短小棒长度之后小于长小棒时摆不成三角形。
③两根短小棒长度之后等于长小棒时摆不成三角形。
师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?
课件演示。
师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)
板书:3+3=6
师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?
师:那么怎样的3根小棒也摆不成三角形呢?
归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。
④小结
师:咱们能不能用一句话概括摆不成三角形的两种情况?
生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。
⑤探究怎样的3根小棒能摆成三角形。
师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?
生:两根短小棒长度之后大于长小棒时能摆成三角形。
师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。
学生算一算验证猜测。
师:那么怎样的3根小棒能摆成三角形?
归纳:两根短小棒长度之后大于长小棒时能摆成三角形。
3、进一步探究三角形边之间的关系
①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)
②师:请你算一算,比一比。
学生同桌两人交流。
个别学生汇报计算结果。
③师:那么三角形的三条边之间有什么关系?
学生思考。
④归纳总结
三角形任意两边之和大于第三边。(板书)
师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。
(学生计算验证)
三、随堂练习
师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?
1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。
《三角形边的关系》教学设计
2、完成“练一练”1-3
四、布置作业
练一练。4
五、全课小结
数学四年级下册课件如何写篇4
教学目标:
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教学重难点:
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教具准备:
直尺、小棒
教学过程:
课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“>”“<”或“=”。
一、数学活动
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,你还可以怎么围?
通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结
通过今天的学习你有什么想法?
板书设计:
三角形边的关系
三角形任意两边的和大于第三边
数学四年级下册课件如何写篇5
教学目标:
1、知道小数点位置移动引起小数大小变化的规律;能依据这一变化规律,比较熟练地判断随着小数点位置的变化,引起这个小数的大小有什么变化。
2、经历小数点移动引起小数大小变化规律的发现过程,体会观察比较、归纳的学习方法。
3、感受数学知识中的逻辑之美,激发学生热爱数学、学习数学的情感。
重点难点:
掌握小数点位置移动引起小数大小的变化的规律
教法学法:
1、教法:情境激趣,引导探究。
2、学法:小组合作,自主探究。
教学准备:
课件
教学过程:
一、生成问题激兴导入
1、学生根据课题提出问题。
师:知道这节课我们要研究哪部分内容吗?
师:你看了这个题目,大家有什么问题要问吗?
(根据学生回答板书:向哪移?变化?)
师:带着问题学习会让我们的学习过程更清晰,学习目的更明确。相信同学们通过这节课的学习,能解决心中疑惑。
(设计意图:“学贵有疑,利用小学生对于新知识的“好奇心”,引导学生自主发问。这些“问题”来自于学生本身的思考,也就是他们急于探究新知的动力,有利于调动学生积极参与到学习和探索中去。)
2、出示孙悟空打小妖的情境动画,将情境中的数据列出,感知小数点位置的变化及小数大小变化。
师:课前老师通过和同学们交流知道同学们都爱看西游记,这天师徒四人正行走在西去取经的路上,突然杀出一个妖怪,想不想看当时是什么情况?(放动画片)
(设计意图:孩子好动,喜欢动画,这一环节设计能有效地把学生的精神集中起来,并通过动画,让学生初步感知小数点位置的移动会引起小数大小的变化,为探索有什么变化规律作好准备,在心理上产生强烈的“我要探索”的冲动。)
二、探索交流解决问题
从情境中提取数据让学生填空
0.009米=(9)毫米①
0.09米=(90)毫米②
0.9米=(900)毫米③、9米=(9000)毫米④
1、推导右移规律。
引导学生借助整数部分,从上往下观察
(1)小数点的位置有什么变化?小数大小有什么变化?
(小组讨论交流)
总结出:小数点向右移动一位,小数就扩大到原数的10倍。
分别把3式与1式、4式与1式作比较再研究提出的问题。
生讨论。
整理并总结出右移规律:小数点向右移动一位,小数就扩大到原数的10倍;小数点向右移动两位,小数就扩大到原数的100倍;小数点向右移动三位,小数就扩大到原数的1000倍。
(2)抢答填空题。
小数点向右移动一位,小数就(扩大)到原数的(10)倍;
小数点向右移动两位,小数就(扩大)到原数的(100)倍;
小数点向右移动三位,小数就(扩大)到原数的(1000)倍。
(3)拓展:利用这个规律说出小数点向右移动四位,小数就扩大到原数的10000倍。
2、推导左移规律。
(1)猜测
小数点向右移动,小数会变大,猜一猜小数点向左移动小数有什么变化?
共同验证
整体观察:小数点向左移动。小数越变越小。
(2)引导学生借助整数部分,从下往上观察
小组讨论交流:小数点的位置有什么变化?小数大小有什么变化?
(全班交流)
小数点向左移动一位,小数就缩小到原数的。
(数学语言讲究精确,师强调缩小到原数的)
分别把2式与4式、1式与4式作比较研究提出的问题。
同桌讨论交流。
全班交流。
整理并总结出左移规律:小数点向左移动一位,小数就缩小到原数的;
小数点向左移动两位,小数就缩小到原数的;小数点向左移动三位,小数就缩小到原数的
(3)抢答填空题。
小数点向左移动一位,小数就(缩小)到原数的();
小数点向左移动两位,小数就(缩小)到原数的();
小数点向左移动三位,小数就(缩小)到原数的();
(4)拓展:利用这个规律说出小数点向左移动四位,小数就缩小到原数的。
(设计意图:这一环节是课堂教学的主体部分,是学习知识,培养能力的主要途径之一是一节课的关键环节。教师有目的地进行引导、提问,把“小数点位置的移动”与“小数大小的变化”联系起来,学生尝到了探索成功的喜悦。在紧张愉快的教学中,突破了这节课的难点。)
3、记忆规律。
(1)用最短的时间记忆规律
(2)和同学们分享记忆小窍门。
(3)、一起总结小数点歌谣
小数点,真调皮,右移、一(位)、二(位)、三(位)……扩大十(10倍)、百(100倍)、千(1000倍);左移一(位)二(位)三(位)缩小十()、百()、千()……
(4)选择性地提问规律。
4、解答课始提出的疑问。
我们课始的疑问有答案了吗?
擦掉问号改成感叹号。
质疑:小数点无论是向左移动还是向右移动,位数不够的情况下应该怎么办?
用数字“0”补齐。
三、巩固应用内化新知
1、帮助师徒四人闯过数学王国的关卡。
2、帮助小猪快餐店解决困难。
快餐店价格中的小数点向左移动一位,让价位变低。
(设计意图:多层次练习,是加强对新规律的巩固和运用,达到活学活用,并有意识地让学生有形象方法记住小数点向右移,原数变大,小数点向左移,原数变小,加强记忆效果,并利用所学新知解决实际问题。)
四、回顾整理,反思提升。
说一说这节课你有什么收获?
(设计意图:培养学生认真严谨的思维习惯)
数学四年级下册课件如何写篇6
一、教学内容:义务教育课程标准实验教科书数学四年级下册61—63页内容
二、教学目标:
1.知识与技能:通过一组数的比较,观察各数之间的相同点和不同点,引导学生发现小数点位置的移动引起小数大小的变化规律,并应用这一规律计算有关的乘、除法。
2.过程与方法:通过操作、观察、归纳、概括等数学活动,发展数学思维能力。
3..情感态度价值观:培养学生的合作意识及知识迁移和推理能力。
三、重点难点:
重点:小数点位置移动引起小数大小变化规律的应探索及掌握。
难点:小数点位置移动引起小数大小变化规律的理解及灵活应用。
教学准备:小黑板教学挂图(小数点移动)
四、教学过程
(一)复习准备
1、提问。(1)把5米分别扩大10倍、100倍、1000倍,各是多少米?(2)把5000厘米分别缩小10倍、100倍、1000倍,各是多少厘米?
2、按从大到小的顺序排列。0.004、0.4、0.04
(二)导入新课
1.师:[出示小黑板]下面是四年级三位同学的身高纪录。请大家看一看,这些数据对不对?
(小明14.5米,小红1.38米,小李0.14米)
2.师:你们笑什么呀?
生:小明的身高不对。14.5米太高了。
生:[用手比]小李0.14米也不对,0.14米只有这么高
师:两个错的数据错在哪里?小数点写错了位置。
师:是啊,在小数点的末尾添上0或者去掉0不改变小数的大小,但是小数点的位置移动直接引起小数的大小发生变化。今天我们就一起来学习小数点移动的知识。[板书课题:小数点移动]
(三)探究规律
1、出示情景
出示(例5教学挂图):教师便叙述边板书0.009米---0.9米—0.9米---9米{同学们都看过西游记吧,齐天大圣孙悟空的“金箍棒”平时放在耳朵里,长只有0.009米,遇到妖怪的时候,才亮出来,由小变大,0.009米、0.09米、0.9米、9米、90米……
师:观察这组数和金箍棒的变化,你有什么发现?(从上往下观察小数点是怎样移动的?数的大小有什么变化吗?从下往上观察小数点是怎样移动的?数的大小有什么变化?)
小结:看来小数点向后移动,原来的数就扩大;小数点向左移动,原来的数就缩小。
板书:右移扩左移缩
2、合作探究
(1)提问:从上往下观察它们都是把小数点向右移动,却得到了三个不同的数,对吗?看来小数点移动的位数不一样,原数大小的变化也就不一样。数的大小的变化既与小数点移动的方向有关,还与小数点移动位数的多少有关。
(2)合作探究:
究竟有怎样的关系呢?我们来继续深入研究。各组有这样一张表格和一张小数数位表,请你们小组选择其中的一种方法进行研究。先吧空白处填写完整,再观察小数点移动的位数与原来小数的大小变化。小数点可以向左移动,也可以向右移动。
方法1:表格
小数点移动的位数
()米=()毫米
小数的大小变化
从()往()观察
小数点向()移动
移动()位
()米=()毫米
移动()位
()米=()毫米
移动()位
()米=()毫米
方法2:(学具中的数位表)
(3)交流汇报
谁来说一说,你们是选择哪种方法研究的?你们发现了什么?
能概括地说一说我们发现的这个规律吗?
[指名学生对照板书说明小数向右移动引起小数扩大的规律]
悟空打完妖怪,金箍棒要放回去了,谁来说一说这个时候金箍棒怎么变的?(从下到上观察)
(四)实际应用
1.明确数的变化的方法
我们大家研究得出这个规律有什么作用呢?
1.如果要吧一个小数扩大10倍、100倍、1000倍……可以怎么办?
如果要缩小为1/10、1/100、1/1000……呢?
2.集体交流
根据小数点移动的变化规律,如果要吧一个数扩大到它的10倍、100倍、1000倍,只要把小数点向右移动一位、两位、三位就行了。要把一个数缩小到它的1/10、1/100、1/1000,只要把小数点向左移动一位、两位、三位。
3.强化去0、添0的问题
出示例6、7把0.01扩大到它的10倍、100倍、1000倍,各是多少?
把1缩小到它的1/10、1/100、1/1000,各是多少?
遇到位数不够怎么解决?
小数点向左移动时,如果整数数位不够则要在数的左边用“0”补足。
整百、整千的数,小数点向左移动后,小数末尾的“0”要去掉。
4.填空:把2.3的小数点向右移动一位,就()到原数()倍。
把0.375扩大到原数100倍,小数点向()移动()位。
把0.73的小数点向()移动()位,就缩小到原数的1/1000。
把30的小数点向()移动()位,原数变成0.003。
5.把1.8改写成下面各数,它的大小有什么变化?
0.018、180、0.0018、1.80
(五)总结本节知识,畅谈收获。
附:板书设计
小数点移动
0.009米→0.09米→0.9米→9米
0.009米=9毫米
0.09米=90毫米
0.9米=900毫米
9米=9000毫米