5068教学资源网 > 学习宝典 > 数学 > 数学课件 > 四年级 > 四年级数学上册课件

四年级数学上册课件

开鹏0分享

四年级数学上册课件5篇

四年级数学的课件怎么写。象形字的构字方法是描绘物体轮廓,突出物体特征。作为原始的造字方法,象形字对了解和识记现今使用的汉字有重大意义。下面小编给大家带来关于四年级数学上册课件,希望会对大家的工作与学习有所帮助。

四年级数学上册课件

四年级数学上册课件【篇1】

课程标准:

1.体会数学知识之间、数学与生活之间的联系,运用数学的思维进行思考,增强发现和提出问题,分析解决问题的能力。

2.从现实生活或情境中抽象出数学问题,初步形成模型思想。

教学目标:

1、学生通过小组合作,能够用自己的话说出什么是速度、时间与路程,知道速度的单位,会正确读写速度单位。

2、学生通过自主探究,构建速度×时间=路程的数学模型,理解速度、时间、路程之间的关系。

3、运用速度,时间与路程之间的关系解决一些简单的实际问题。

教学重点:

熟悉和掌握时间,速度和路程之间的关系

教学难点:

对速度,速度单位的熟悉和掌握

学情分析:

学生已经掌握了乘除法各部分间的关系,具备了除数是整十数除法的计算能力,能独立解答求每分钟行多少米的应用题,在已有的生活实践中,经历过路程、时间与速度,能模糊地感觉到它们之间可能存在一定关系,这些知识、能力及经验为学生掌握本节课的教学内容,建构行程问题中的数量关系模型,解决相应的应用题提供了前提条件。

教学策略:

1)助学单先行,以学定教,教师的教是为了促进学生的学。学生对这个课题已经知道多少、存在哪些障碍?如何做能协助学生轻松、有效的实现目标?这些是我进行教学方法设计的出发点与着力点。

2)体现“五主一辅”原则。本节课我遵循以学生为主体,以教师为主导,以思维训练为主线,以教材素材为主载,以学生情感的升华为主旨,以趣味性的故事情节和多媒体资源的声像图为辅的原则,创设问题情境,启迪学生的抽象思维,促进学生主动、和谐的发展,最后达到建模。

教学过程:

一、激趣导入

师:同学们,你和你的家人从网上买过东西吗?

师:那你们知道我们买过的东西是怎样交到我们的手里的吗?

师:其实快递也是物流,关于物流,老师这里有一段视频,让我们一起来了解一下。(学生观看视频)

师:正是因为物流中心有着这么多的作用,所以每天那都是车来车往,你看摩托车、大货车,小货车都在赶着往物理中心送货呢。

师:你发现了那些数学信息?

师:根据这两条信息你能提出一个什么数学问题?

生1:车站与物流中心相距多少米?

师:经过观察,咱们发现并提出了数学问题,下面咱们就分析和解决问题。

二、活动促思

1.探究速度时间与路程

师:同学们,这是助学单的第一个问题,先请大家回忆一下,你昨天是怎么想的?现在请大家在组内交流你的想法。

师:哪个小组愿意交流一下你们的想法?

学生小组展示,并且进行互动

师:同学们讨论的非常热烈,刚才大家提到一个非常关键的几个词(板书速度、时间、路程),请大家结合实例想一想什么是速度?什么是路程?

同学们紧互动交流。

总结:这样我们把每分钟、每小时等等这样的时间可以叫做单位时间单位时间行驶的米数或千米数就可以叫做(速度)

师:那速度单位应该怎么写呢?哪位同学愿意当小老师给大家讲一讲?

学生讲解

师:学会了吗?那老师可要考考大家。

课件出示:骑自行车走了9千米,这里的9千米表示的是骑自行车的速度。

师:看来表示速度的时候,一定要表示清楚那个单位时间行驶的速度

课件出示:刘翔的速度是9米/秒,蜗牛的速度是9米/时,两个速度相等

师:哪里错了?

师:我们如果让刘翔和蜗牛比赛,滴答一声谁出去了?谁还在后面慢慢的爬呀?

2.探究三者之间的关系

师:刚才我们认识了了速度、时间和路程,想一想老师接下来会提问什么问题?

学生猜测

师:没错,我们开始解决助学单的第三个问题,结合实例说一说速度、时间、路程之间的关系?现在先想一想,把自己的想法在组内交流一下。

学生互动交流

师:同学们经过互动交流,我们理清了速度、时间、路程之间的关系,我们一起来回顾一下。速度×时间=路程路程÷时间=速度、路程÷速度=时间,这就是今天我们要学习的内容。

师:现在请同桌两人再互相说一说。

三、拓展延趣

师:看大家学的这么认真,老师奖励大家去玩一个闯关游戏,看谁来到了我们的课堂上,可是可爱的熊大熊二被光头强绑架了,你们愿意参与营救活动吗?

四、巩固练习

1、第一关:先说说路程、速度、时间的关系再填写下表(课本100页的1)

师:这是三种交通工具的形式情况,仔细观察,解决第一个你打算用到了什么关系式?

生:因为路程÷时间=速度,所以用30÷2=15

师:第二个有关摩托车的,你能解决吗?第三个呢?

师:恭喜大家顺利闯过第一关,下面进入第二关

2、第二关:甲地离乙地有240千米,一辆汽车的行驶速度是60千米/时,从甲地到乙地行驶了4小时,

(1)60×4=240米

(2)240÷4=60千米/时

(3)240÷60=4小时

师:请问第一个表示什么意思?第二个?第三个?

师:同学们真厉害,这两道题都没难住大家,接下来我们接受更大的挑战,请看

3、第三关:平均每小时可以做纸花25朵,3小时可以做纸花多少朵?

生:25×3=75朵

师:说说你的想法

师:每小时做得朵数×时间=一共的朵数

小明打作文,平均每分钟打100个字,5分钟可以打完,他的作文有多少个字?

生:100×5=500(个)

师:你能像上个题一样说说这个题的关系式吗?

生:每分钟打的字数×时间=一共打字个数

师:恭喜同学们成功营救出熊大熊二,老师为你们点赞。

师:仔细观察刚才解决的这两个问题,然后回忆下刚上课时我们解决的这个问题,你发现他们之间有着怎样的联系?

师:老师等等你,仔细考虑一下

师:在数学上能用联系的眼光看待问题,这对我们的数学学习非常的重要。

师:这么多不同的数学问题,都可以归结到一个关系式上。希望你带着发现的眼睛继续去寻找生活中的数学问题。

五、总结回顾

师:这节课马上要结束了,回一下这节课,你有什么收获?

师:同学们的收获可真不少,课下请把本节课知识整理在思维导图本上,善于总结的孩子才会有更大的进步。

四年级数学上册课件【篇2】

教学内容:

课本62—64页

教学目标:

1、在实际情景中,理解路程、时间与速度之间的关系

2、根据路程、时间与速度的关系,解决生活中简单的问题

3、感受数学知识与生活的密切联系,树立生活中处处有数学的思想

教学重点:

根据路程、时间与速度的关系解决生活中的实际问题。

教学过程:

一、创设情境,激发学生的学习兴趣。

出示刘翔跑步图片

师:同学们,图中跑步的是谁呀?你们认识吗?(刘翔)

师:对了,这就是我们中国的飞人刘翔。

师:同学们,刘翔跑得怎么样?(很快)这里的快指的是刘翔的什么快?(速度)(出示成绩表)

师:从成绩单中,他们都跑的这110米是什么意思?(出示:路程)

那么他们的12.91秒,13.18秒,13.20秒这些是什么?(出示:时间)同学们,通过这个表格来看,为什么是刘翔赢了呢?(他用的时间最少)师:(出示并观察这两个表格),那么通过刚才的两次比较,你发现速度的快慢与什么有关系?(时间、路程有关系)到底什么是速度?速度与路程和时间又有什

么关系?今天这节课就一起来研究(板书:路程时间与速度)

二、师生互动、探究新知。

1、师:刚才呀,咱们在比快慢的时候知道了如果路程相等的时候,谁用的时间少,谁就快。如果路程跟时间都不相同呢?怎么比快慢?下面请看这样一组信息:小卡车2小时行驶了120千米,大客车3小时行驶了210千米,哪辆车跑的比较快?

(1)师:你们能从图中了解到哪些数学信息?

哪辆车跑的快些?你们能试着解决吗?

(2)你可以通过计算,也可以借着画线段图的方法来分析数量关系,解决问题,清楚了吗?做完后可以和同桌交流,开始

(3)汇报各自的解决办法。(指名板演)

(4)同学们比的都不错,那么刚才老师在巡视的过程中,发现同学们都没有用线段图,其实呀,画线段图可以帮助我们正确的理解数量关系,解决问题,那么怎么画线段图呢?你们想不想学习呀?

师:好,请看。我们先画一段线段,用它表示小卡车行驶的路程,小卡车行驶了多少千米呀?(在黑板上画下表示120千米的线段)

然后我们再画一条线段,用来表示大客车行驶的路程,那么在画的时候要注意左端对齐,那么同学们,跟这条线段相比,应该画多长呀?

强调:应该按照一定的比例适当的长些。

(黑板上画了210千米长的线段)

那么大客车行使了多少千米?(210千米、标上)

师:小卡车的120千米是多少时间行驶的?(生反馈:2小时)

师:那么怎么样在线段图上表示它1小时行驶的路程?

师:恩,在一半的位置来画,就是把线段怎么样?

师:平均的分成两半

(教师在黑板上分)那么这里的每一份表示小卡车1时行驶的路程,我们这样来表示。那么怎么样在线段图上表示大客车1时行驶的路程呢?

(在黑板上比划了不同的3段)可以吗?怎么分?一起说。

师:把它平均分成3份,同样,这是每一份表示大客车1时行驶的路程,同样,我们取这一段来表示。

(教师在黑板上分)那么从线段图上来看,哪辆车1时行驶的路程长?师:大客车行驶的路程长。大客车就跑的快。

2、讲解速度的读法、写法

师:在刚才的比较过程中,我们无论是通过计算,还是通过画线段图,都是比较两辆车多长时间行驶的路程?

师:对了,他们每小时或1时行驶的路程就是他们的速度,那么像这样小卡车1小时行使了60千米,也就是小卡车的速度是60千米/时,

(板书60千米/时)这就是我们今天要学习的用来表示速度的单位,谁来说一说这个单位是是由哪些我们学过的单位组成的?

师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作每60千米每时。(指名读)

你知道每小时60千米表示什么吗?

那么你能不能这样来表示出大客车的速度?在练习本上写一写(指名板演)

3、经历公式形成的过程。

师:很好,刚才呀,咱们求出了小卡车和大客车的速度,那么结合这个算式和线段图来看一看,速度和路程还有时间有什么样的关系?和你的伙伴交流交流。好,开始。

(汇报,结合120÷2=60(千米)来讲解。板书:速度=路程÷时间)让学生读一读。

4、理解单位时间,理解速度的意义。

同学们,那么通过这个关系式来看,如果要想求出速度的话,我们需要知道什么?(路程与时间)知道了相对应的路程和时间,我们就可以求出速度了。好,请同学们在下面小声的读题,然后口答下列各题中物体的速度,开始。师:请写出下面各物体的速度

①一列火车2时行驶180千米,这列火车的速度是_________

②自行车3分钟行驶600米,这辆自行车的速度是_________

③一名运动员8秒跑了80米,这名运动员的速度是________

师:我们一起来看下这三个速度,它们分别是这些物体在多长时间内行驶的路程?

师:其实他们每时,每分,每秒行驶的路程就是他们的速度,我们把这样的像一时、一分、一秒…这样的时间叫做单位时间。你对速度是怎样理解的?物体在单位时间(一时,一分,一秒…)内所行驶的路程,叫做速度。自己练习说一说。

5、经历公式形成的过程。

现在咱们知道了什么是速度,也知道了速度等于路程除以时间,那么同学们,时间该怎么求?路程又该怎么求呢?我们一起结合下面的问题来试一试。(出示题目1)你能从中获得什么数学信息?

那么根据这些信息,你能解决这个问题吗?

你能说一说求路程的关系式是怎么样的?

时间=路程÷速度

路程=时间×速度

师:同学们太厉害了,通过这个关系式我们可以看出要想求出速度,就必须知道相对应的路程和?(时间)

师:那么求时间和求路程也是一样的,必须要知道相对应的另两个量,你看,路

程,时间和速度的关系是多么的密切呀。

三、实际运用

1、感受生活中的速度

师:速度不仅在咱们的课堂中有,在咱们的生活中也是无处不在的,咱们一起到生活中感受一下速度,好吗?读一读,感受一下。出示看一看图片让学生看一看读一读。

2、解决问题

小红和小明约好到少年宫玩,如果她俩同时从家里出发,谁会先到达少年宫呢?

(出示只有距离没有其它条件的题目)

师:那么同学们,你说如果看路程的话,能不能确定谁先到少年宫?师:还需要知道什么?

四年级数学上册课件【篇3】

教学内容

人教版小学数学四年级下册P17—18。

学习目标

1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。

3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。

学习重点:

理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

学习难点:

经历探索加法交换律和加法结合律的过程,发现并概括出运算律。

学习准备

课件、学习单

学习过程

一、创设情境,提出问题。

1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:

生:骑自行车。

师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?

生1:李叔叔准备骑车旅行一周。

生2:李叔叔上午骑了40km,下午骑了56km。

2.师:根据了解到的信息你能提出什么问题?

生1:李叔叔今天一共骑了多少千米?

生2:李叔叔今天上午比下午少骑多少千米?

二.合作探究,解决问题。

(一)探究加法交换律

1.列式计算

师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?

生1:40+56(板书)

师:还可以怎样列式?

生2:56+40(板书)

师:它们之间可用什么符号连接?

生:等号。(师板书等号)

师:为什么可以用等号连接?

生1:因为它们的和都是96千米。

生2:因为它们都是求的李叔叔一天行的总路程。

2.课件出示:

123+377Ο377+123

1124+76Ο76+1124

师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!

生:能

师:为什么?

生:因为它们的和都相等。

师板书:

3.师:观察这三个等式,你发现了什么吗?

生:两个数相加,交换加数的位置,和不变。

师:从刚才的发现中,你们会猜想到什么呢?

生:是否所有的加法算式两个加数交换位置和不变呢?

(板书:两个数相加,交换加数的位置,和不变?)

4.师:口说无凭,你打算怎样验证咱们的猜想?

生:我们可以再举几个例子来验证一下。

师:那请大家拿出本子来,举几个这样例子来验证看看!

(生独立举例验证)

5.师:谁来上台说说你是怎么举例验证的?

生:(百以内的加法、多位数的加法、小数加法……)

师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?

生:没有。

师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。

师:谁能够再一次总结一下我们刚才发现的这个规律?

生:两个数相加,交换加数的位置,和不变。

师:旁边的问号是不是可以擦掉了?!

师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”

(板书加法交换律)

6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?

生:举不完。

师:是啊,像这样的等式我们能写出很多很多来。

(师边说便在等式的下面板书“……”)

师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。

(学生尝试)

7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?

生1:甲数+乙数=乙数+甲数。

生2:△+□=□+△

生3:a+b=b+a

师:这三位同学的方法能表示出所有的情况吗?

生:能。

师:这三种方法,你更欣赏哪一种?

生:第三种。

师:说说你的理由。

生:因为第三种更方便、更简洁。

师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。

(师板书a+b=b+a)

师:你觉得a和b可以表示哪些数?

8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。

生1:我们是先观察发现,再举例验证,最后是总结规律。

师:很简单明了,还有谁来说一说?

生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。

师:说的好不好?把掌声送给他!

(板书:观察发现→举例验证→总结规律。)

9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?

生:能。

(二)探究加法结合律

1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?

生:

一.观察发现。

仔细算出每一组题的结果,你发现了什么?

二.举例验证。

你能再举出几组这样的例子吗?

三.总结规律。

你能用符号表示这个运算定律吗?

2.师:下面就请大家按照自学锦囊上的提示自学,开始。

(生独立完成)

师:完成的同学同桌交流一下。

3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?

生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。

师:每一组题的两道算式的计算方法有什么不一样吗?

生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。

师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?

生:我还发现这三组题,后面的题都改变了运算顺序。

师:运算顺序改变了,那么什么没有变?

生:和不变。

师:还有没有什么不变?

生:数字的位置没变,只是运算顺序变了。

4.师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?

生:举例验证。

师:那谁来说一说你举的例子?好,你来!

生1:(24+76)+28=24+(76+28)(师板书)

师:谁再来分享一下你举的例子?

生2(8+7)+3=8+(7+3)

师:谁再来举一个?

生3:(325+178)+22=325+(178+22),他们都等于525.

5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?

生:对!

师:有没有举出反例的?

生:没有。

师:那由此可以说明,我们该发的规律是……

生:正确的!

师:下面请同学们把我们发现的规律齐读一边,预备,起!

生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变

师:刚才发现这个重要的规律,我们把它叫做加法结合律。

(板书:加法结合律)

6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?

生:(a+b)+c=a+(b+c)。

7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?

生:加法交换律和加法结合律有什么相同点和不同点?

师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!

(生小组交流,师巡视)

师:哪一位同学到前面来分享一下你们讨论的结果?

生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。

师:你们同意吗?还有和这一组不一样的吗?

师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!

三、巩固练习,拓展提高。

1.下列等式各运用了什么运算定律?

2.你能()中填上适当的数吗?

3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:

4.小明在上课的时候,老师出了一道这样的题目:

四.课堂总结。

1.本节课你什么收获?还有什么疑问?

2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!

五.板书设计

四年级数学上册课件【篇4】

一、教学内容:

乘法分配律的应用

二、教学目的:

1.引导学生能运用乘法分配律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

(一)、复习准备

出示:

口算:

73+27、138×100、100-64、64×1、8×9×125、(4+40)×25

(二)、新授

我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102×()

学生任意填上一个两位数。

老师迅速说出它的得数,而不用笔算。

出示:计算102×43小组讨论完成。

学生可能出现:

(1)(100+2)×43、(2)102×(40+3)

在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。

练习:

(1)计算102×24

出示:9×37+9×63

学生在练习本上独立完成。

(2)9×37+9×63

=333+567

=900

(3)9×37+9×63

=9×(37+63)

=9×100

=900

找出不同的方法,进行板演。

引导学生对比两种方法,重点理解、说明第二种方法。

小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。

在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。

另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。

练习:(80+8)×25、32×(200+3)、35×37+65×37、38×29+38

讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?

订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

(三)、巩固练习

1.师生对出题。

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。

2.根据乘法分配律把相等的算式用“=”连接起来。

23×12+23×88、(35+45)×12、(11×25)×4、25×(4+40)

讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?

3.P38/5

(四)、小结

谈收获。

(五)、作业:P38/6—8

课后反思:

四年级数学上册课件【篇5】

教学目标

1、引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行

一些简便运算。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教材简析

1、有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。

2、从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。

3、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。

教学重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算

教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算

教学策略

1、充分利用学生已有的感性认识,促进学习的迁移。

2、加强数学与现实世界的联系,促进知识的理解与应用。

3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

    756600