5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 八年级 > 八年级数学分析课件简短

八年级数学分析课件简短

开鹏0分享

八年级数学分析课件简短8篇

八年级数学的课件怎么写。语文是基础教育课程体系中的一门重点教学科目,其教学的内容是语言文化,其运行的形式也是语言文化。下面小编给大家带来关于八年级数学分析课件简短,希望会对大家的工作与学习有所帮助。

八年级数学分析课件简短

八年级数学分析课件简短(精选篇1)

一、勾股定理:

1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的证明:

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是:

(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

4.勾股定理的适用范围:

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

二、勾股定理的逆定理

1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

(1)确定边;

(2)算出边的平方与另两边的平方和;

(3)比较边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

三、勾股数

能够构成直角三角形的三边长的三个正整数称为勾股数.

四、一个重要结论:

由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

五、勾股定理及其逆定理的应用

解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

八年级数学分析课件简短(精选篇2)

1、在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

(1)多边形的一些要素:

边:组成多边形的各条线段叫做多边形的边。

顶点:每相邻两条边的公共端点叫做多边形的顶点。

内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间

2、多边形的分类:

(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)。本章所讲的多边形都是指凸多边形。

八年级数学分析课件简短(精选篇3)

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的'稳定性。

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13.公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和

性质2:三角形的一个外角大于任何一个和它不相邻的内角

⑶多边形内角和公式:边形的内角和等于180°

⑷多边形的外角和:多边形的外角和为360°

⑸多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形

②边形共有条对角线

八年级数学分析课件简短(精选篇4)

考点一:三角形

三角形中的考点分为三类:一类是一般的三角形,一类是等腰三角形,一类是等边三角形。

一般的三角形常考的是三角形的面积,周长相关的计算,以及三角形全等相关的证明。三角形的面积为1/2乘以底乘以高,三角形的周长为三个边长之和。证明三角形全等的方法:SSS(三个边对应相等的两个三角形全等),SAS(两边及其夹角对应相等的两个三角形全等),AAS(两个角以及其中一个角对应的边相等的两个三角形全等),ASA(两角及其夹边对应的两个三角形对应相等的两个三角形全等)。

等腰三角形:两个边长或者两个角相等的三角形为等腰三角形。等腰三角形底边上的高和中线还有角平分线三线是重合的,考试的时候,经常构造这个辅助线进行相关的证明。

等边三角形:三个边都相等的三角形为等边三角形,等边三角形的各个角都是60度,各个边长都相等。

考点二:多边形

多边形的内角和:180(n-2),n为多边形的变数。经常给出度数范围,求边长,常用的方法是假设多边形的边数为n,列不等式,最后求出关于边数n的范围,取整数即可。如一个多边形的'内角和大于850度小于1000度,求多边形的边数。

列不等式:850<180(n-2)<1000,解的:85/18+2<n

多边形的对角线的个数:n(n-3)/2

考点三:轴对称

轴对称图像经常会结合全等进行相关的考核,主要是数形结合的题目,后续在模拟试题中会提到,你只要知道关于某条线能够完全重合的图形为轴对称图形即可,如等腰三角形,正方形等。

考点四:整式

整式必考的考点为代数式相关的求值,平时学生们都加以训练了,只要考试认真按照四则运算进行相关的求解即可,先化简,再代入值求解即可。

考点五:因式分解

因式分解是必考的内容之一,因式分解答题步骤我们来为大家总结一下:首先看式子中是否有公因数,有公因数的一定要提取公因数,然后,看是否能够利用平方差公式或者完全平方公式,不能的话,考虑使用十字相乘的方法进行分解。具体的分解技巧见前面课程中提到的因式分解解题技巧。

考点六:分式

分式考点比较单一,首先是分式的计算,和整式是一样的方法,其次是分式方程解应用题,求解完应用题一定要代入原来的分式方程中进行验证,判断分母是否为0,即解方程结束,要加上一句话:经验证x等于某某数值为原分式方程的解。相关的解题注意事项,后续在期末试题中我们会给出详解的哦。

八年级数学分析课件简短(精选篇5)

平面内点的坐标特征

1.各象限内点P(a,b)的坐标特征:

第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0.(说明:一.三象限,横.纵坐标符号相同,即ab>0;二.四象限,横.纵坐标符号相反即ab<0。)

2.坐标轴上点P(a,b)的坐标特征:

x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0

(说明:若P(a,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a,b)在坐标轴上。)

3.两坐标轴夹角平分线上点P(a,b)的坐标特征:一.三象限:a=b;二.四象限:a=-b。

对称点的坐标特征

点P(a,b)关于x轴的对称点是(a,-b);

关于y轴的对称点是(-a,b);

关于原点的对称点是(-a,-b)

点到坐标轴的距离

点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣。

点的平移坐标变化规律

(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;

(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为“右加左减,上加下减”)

八年级数学分析课件简短(精选篇6)

矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形

四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形

(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积

S矩形=长×宽=ab

八年级数学分析课件简短(精选篇7)

一次函数

1.一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函数是特殊的一次函数。

2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。

3.正比例函数图象性质:经过;>0时,经过一、三象限;<0时,经过二、四象限。

4.一次函数图象性质:

(1)当>0时,随的增大而增大,图象呈上升趋势;当<0时,随的增大而减小,图象呈下降趋势。

(2)直线与轴的交点为,与轴的交点为。

(3)在一次函数中:>0,>0时函数图象经过一、二、三象限;>0,<0时函数图象经过一、三、四象限;<0,>0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。

5.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

6.运用一次函数的图象解决实际问题。

八年级数学分析课件简短(精选篇8)

四边形性质的探索

1.多边形的分类:

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1x2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3.多边形的内角和公式:(n-2)x80°;多边形的外角和都等于。

4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

    764095