2023五年级下册数学期末考试试卷及答案免费
推荐文章
2023五年级下册数学期末考试试卷及答案免费下载
如何帮助小学生更好地学好数学这门学科呢?我们可以通过试卷来巩固五年级数学知识。以下是小编准备的一些2023五年级下册数学期末考试试卷及答案免费,仅供参考。
五年级数学下册期末试卷及答案
★一、看清题目,巧思妙算。(共28分)
1、直接写出得数:(4分)
37 + 27 = 23 - 16 = 0.32×99 + 0.32= 0.25= ( )( )
1- 56 = 13 + 14 = 25×0.07×4= 5 14 = ( )( )
2、求下列各组数的最大公因数与最小公倍数,在()里写每组的最大公因数,在[]里写每组的最小公倍数。(4分)
8和12 11和 33
( ) ( )
[ ] [ ]
3、解方程:(8分)
X- 56 = 56 8X = 4 X÷12.5 = 8 12.7+ X = 15.7
3、计算下列各题,能简算的要简算。(12分)
23 + 45 - 310 118 - ( 56 + 38 )
67 -( 1114 - 12 ) 59 + 411 + 611 + 49
【命题意图:本册教材在计算方面主要学习的是解方程、异分母分数加减法。所以本大题主要安排了解方程、异分母分数加减法以及相应的简算,同时也穿插了小数的加减乘除、求最大公因数和最小公倍数等。本大题主要目的是考查学生对本册计算内容的掌握程度以及灵活计算的能力和意识。】
二、细心考虑,认真填空。(共27分,除第11题3分外,其余每空1分。)
1、分数单位是 17 的最大真分数是( ),最小假分数是( ),把这个假分数再添上( )个这样的分数单位就是最小的素数.
★2、小明在教室里的位置用数对表示是(5,3) ,她坐在第( )列第( )行。小芳坐在小明的正前方,用数对表示她的位置是( , )。
3、在( )里填上最简分数。
25秒=( )分 30厘米=( )米 250千克=( )吨
4、在 里填上“>” “<” “=”。
37 821 23 34 89 32 ★ 34 0.7499
5、( )÷8 = 1216 = 3( ) = ( ) <填小数>
第25届 第26届 第27届 第28届
16 16 28 32
★6、中国历届奥运会获得的金牌数如右表:
(单位:枚)
第27届奥运会获得的金牌数是第26届的( )( ) ,第28届奥运会获得的金牌数是第27届的( )( ) 。
7、用圆规画一个周长是25.12厘米的圆,圆规两脚间的距离是( )厘米,画出的圆的面积是( )平方厘米。
★8、用边长(整分米数) 分米、 分米、 分米的正方形都能正好铺满长16分米、宽12分米的长方形。
9、自然数a和b的最大公因数是1,那a和b的最小公倍数是( )。
★10、 a ×4 b +8 c ÷9 4 ,题中a是( )
【命题意图:以上填空题,涉及到的知识点有:分数单位(1)、确定位置(2)、约分(3)、比较分数的大小(4)、分数的基本性质和分数与除法的关系(5)、求一个数是另一个数的几分之几及约分(6)、求圆的半径和面积(7)、公因数(8)、最小公倍数(9)、解决问题的策略“倒推法”(10)。主要考查学生对这些知识的掌握以及综合应用知识的能力。北京奥运会即将举行,第6题是营造一下奥运氛围;第8题是考查学生对“公因数”是否有深刻体验;第10题是考查学生是否能灵活运用“倒推法”求出字母a的值。】、
11、
【命题意图:本题是本册统计知识中的复式折线图,主要考查学生对复式折线统计图的读图能力以及分析数据的能力,由此增强统计观念,培养统计能力。】
三、慎重选择,择优录取。(共5分)
1、5米长的花布做了6条同样大小的童裤,每条童裤用这块布的( )。
A、56 米 B、 16 C、谁在乎
2、世界上第一个把圆周率的值精确到六位小数的数学家是( )。
A、刘徽 B、祖冲之 C、 欧几里德
★3、今年“国庆七日长假”,陆老师想参加“千岛湖双日游”,哪两天去呢,陆老师共有多少种不同的选择? ( )
A、5种 B、6种 C、4种
★4、右边的分数中:59 、 37 、 1224 、 911 、13 、45 , 比 12 大的有( )个
A、3个 B、4个 C、2个
★5、下图中哪个图形的周长最长? ( )
a cm
a cm a cm
A、正方形 B、圆 C、等边三角形
【命题意图:第1题是考查学生对分数意义的理解,主要考虑有些学生对这题很头疼,所以加了一些快乐元素“谁在乎”。(美国有位教授的课,选择题常有“谁在乎”这一选项,所以学生们都疯狂的爱上这位教授的课。我想在考试时也可尝试一下,疏松一下学生紧张的心情);第2题是考查学生的数学文化知识;第三题是考查学生用“找规律”解决实际生活问题的能力;第4题是考查学生用各种方法比较异分母分数大小的能力;第5题是一个综合知识题,考查学生对图形周长计算的掌握以及学生的符号意识和代数能力。】
四、仔细推敲,判断对错。(共5分)
1、等式不一定是方程,方程一定是等式。 ( )
2、在同一个圆中,圆心到圆上的距离处处相等。 ( )
★3、分母为8的最简分数共有4个。 ( )
4、1千克的34 和3千克的14 相等。 ( )
5、真分数都小于1,假分数都大于1。 ( )
【命题意图:本题主要考查学生对本册中一些重要概念的掌握,包括真假分数、圆的半径、最简分数、分数的意义、等式与方程,同时考查学生的判断推理能力及逻辑思维能力。】
★五、手脑并用,操作思考 。(每题1分,共5分)
(右下的方格图,每个方格的边长表示1分米。)
【命题意图:本题是确定位置以及圆相关知识的综合应用题,让学生在动手的同时又动脑。主要目的是考查学生对用数对确定位置、用圆规画圆、画直径、求圆面积等的掌握程度以及综合应用知识的能力。】
六、运用知识,解决问题。(第1~5题,每题5分;第6题选做A题满分3分,选做B题满分5分。)
★1、只列方程不计算:
① 正方形的周长为14米 。 ②小刚今年12岁,比他的爸爸小
26岁,爸爸今年几岁?
解:设
X米
2、小林和小军都到图书馆去借书,小林每6天去一次,小军每8天去一次,如果7月1日他们两人在图书馆相遇,那么下一次都到图书馆是几月几日?
★3、五(3)班的同学在母亲节都表达了对妈妈的节日祝福。其中,13 的同学送了鲜花,15 的同学给了妈妈一个香香的吻,其余的同学都送上了自制的贺卡。送自制贺卡的同学占全班的几分之几?
4、一位杂技演员在悬空的钢丝上骑独轮车。独轮车车轮的直径是45厘米,从钢丝的一端到另一端,车轮正好滚动40圈。这根悬空的钢丝长多少米?
★5、同学们一定都去过肯德基 吧!,下图是某一时刻两家肯德基餐馆的营业情况。请你通过计算判断那一时刻哪家餐馆比较拥挤?
餐馆一 餐馆二
8米 84人 6米 36人
8米
12米
【命题意图:以上五题,主要考查学生综合运用所学知识解决实际问题的能力,进一步感受数学的价值,感受数学与生活的密切联系,进一步发展应用意识,培养学生根据实际问题的特点选择相应策略的能力。第1题,列方程解决实际问题,让生体会方程的特点及价值;第2题,最小公倍数在实际生活中的运用;第3题,分数的意义及单位“1” 的运用,并渗透感恩教育;第4题,圆周长计算在实际生活中的应用;第5题,比较分数的大小,置于“KFC”中,激发学生的解题兴趣。】
★6、本题为选做题。A、B两题中任选一题解答,A、B两题都做只以A题评分。A题为3分,B题为5分。(选做B题全卷满分100分。)
A.(3分) 小方收集了一些邮票,他拿出邮票的一半还多1张送给小林,自己还剩36张。小方原来有邮票多少张?
B.(5分)一瓶果汁,第一次喝了所有果汁的一半少50毫升,第二次喝了剩下果汁的一半多25毫升,这时瓶中还剩125毫升。这瓶果汁原有多少毫升?
【命题意图:设计本题的最大目的是考查学生的审题习惯以及审题能力。不读题的学生,起笔就是两题,不能得满分;读题不仔细、不完整的学生,随意选做一题,又可能错失全卷100分;认真读题的学生,还得作出明智的抉择:有能力解答B题,拿个满分皆大欢喜;没能力解答B题,退而求其次选择A题则是一种谋略。本题使数学考试不仅仅是数学的考试。】
附:
参考答案
一、看清题目,巧思妙算。
1、57 ,12 ,32,14 ,16 ,712 ,7,214 。
2、(4)[24]; (11) [33]。
3、x=53 , x=0.5 ,x=100, x=3 。
4、 518 ,76 ,16 (简算题),47 ,11011 (简算题)。
二、细心考虑,认真填空。
1、 67 ,77 ,7 。
2、5,3,(5,2) 。
3、14 ,310 ,14 。
4、> , < ,< , >。
5、6,4,0.75 。
6、74 ,87 。
7、4, 50.24 。
8、1,2,4 。
9、ab 。
10、7 。
11、(1)90,80 (2)200,150 (3)李方,王刚 。
三、慎重选择,择优录取。
B,B,B,A,A
四、仔细推敲,判断对错。
√,√,×,√,×
五、手脑并用,操作思考。
(1)、 (1,3)
(2)、 (4,4)
(3)、(4)略
(5) 28.26
六、运用知识,解决问题。
1、 4X=14或14÷X=4 设爸爸今年X岁。X- 26=12或 X-12 =26
2、7月25日。
3、715 。
4、56.52米。
5、餐馆一较拥挤。
方法a(比较平均每平方米占的人数) 方法b:(比较人均占地面积)
餐馆一:84÷(8×12)= 78 (人) 8×12÷84 = 87 (平方米)
餐馆二:36÷(6×8)=68 (人) 6×8÷36 = 86 (平方米)
78 人 > 68 人 87 平方米 < 86 平方米
6、 A、74张。 B、500毫升。
五年级下册数学重要知识点归纳总结
第一单元 观察物体(三)
1、 不同角度观察一个物体 , 看到的面都是两个或三个相邻的面。
2、 不可能一次看到长方体或正方体相对的面。
注意点
1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1) 个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2_3_5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系: 奇数+、- 偶数=奇数
奇数+、- 奇数=偶数
偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1: 只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数_奇数=奇数
质数_质数=合数
6、最大、最小
A的最小因数是:1;
A的最大因数是:A;
A的最小倍数是:A;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2_3_5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2_2_3
16=2_2_2_2
最大公因数是:
2_2=4(相同乘)
最小公倍数是:
2_2_3_2_2= 48(相同乘_不同乘)
第三单元 长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)_4=长_4+宽_4+高_4
L=(a+b+h)_4
长=棱长总和÷4-宽 -高
a=L÷4-b-h
宽=棱长总和÷4-长 -高
b=L÷4-a-h
高=棱长总和÷4-长 -宽
h=L÷4-a-b
正方体的棱长总和=棱长_12
L=a_12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长_宽+长_高+宽_高)_2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积= 长_宽+(长_高+宽_高)_2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长_高+宽_高)_2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长_棱长_6 S=a_a_6 用字母表示:S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长_宽_高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长_棱长_棱长
V=a_a_a = a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积_高
用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
_形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体 =V现在-V原来
也可以 V物体 =S_(h现在- h原来)
V物体 =S_h升高
8、【体积单位换算】
大单位_进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位_进率=小单位
小单位÷进率=大单位
长度单位:
1千米 =1000 米 1 分米=10 厘米
1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米
(相邻单位进率10)
面积单位:
1平方千米=100公顷
1平方米=100平方分米
1平方分米=100平方厘米
1公顷=10000平方米(平方相邻单位进率100)
质量单位:
1吨=1000千克
1千克=1000克
人民币:
1元=10角 1角=10分 1元=100分
第四单元 分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.
4、真分数<1≤假分数
真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:
(2)整数化为假分数,用整数乘以分母得分子 如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/10 0.03=3/100 0.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:3/10=0.3 3/5=6/10=0.6
1/4=25/100=0.25
方法二:用分子÷分母
如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
1/2=0.5 1/4=0.25 3/4=0.75
1/5=0.2 2/5=0.4 3/5=0.6
4/5=0.8
1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是1
③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
第五单元 图形运动三
图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……
等腰三角形有1条对称轴,
等边三角形有3条对称轴,
长方形有2条对称轴,
正方形有4条对称轴,
等腰梯形有1条对称轴,
任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:
①对应点到对称轴的距离相等;
②对应点的连线与对称轴垂直;
③对称轴两边的图形大小、形状完全相同。
(5)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车
(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。
旋转的性质:
(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;
(2)其中对应点到旋转中心的距离相等;
(3)旋转前后图形的大小和形状没有改变;
(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;
(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数
第六单元 分数的加减法
1、分数数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减)
(2) 异分母分数加、减法 (通分后再加减)
(3) 分数加减混合运算:同整数。
(4) 结果要是最简分数
2、带分数加减法:
带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
附:具体解释
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
第七单元 统计
1、众数: 一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数:
(1)按大小排列;
(2)如果数据的个数是单数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法:
总数÷总份数=平均数
4、一组数据的一般水平:
(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。
5、平均数、中位数和众数的联系与区别:
① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。
② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况。
③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况。
5、统计图:我们学过——条形统计图、复式折线统计图。
条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
注:① 画图时注意:
一“点”(描点)、 二“连”(连线)、三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。
6、 打电话:
规律——人人不闲着,每人都在传。(技巧:已知人数依次 _ 2)
(1)逐个法:所需时间最多。
(2)分组法:相对节约时间。
(3)同时进行法:最节约时间
第八单元 数学广角
用天平找次品规律:
1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。
2、数目与测试的次数的关系:
2~3个物体,保证能找出次品需要测的次数是1次
4~9个物体,保证能找出次品需要测的次数是2次
10~27个物体,保证能找出次品需要测的次数是3次
28~81个物体,保证能找出次品需要测的次数是4次
82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次