5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 高三 > 最新高三数学分析教案如何写

最新高三数学分析教案如何写

开鹏0分享

最新高三数学分析教案如何写(7篇)

高三数学的课件怎么写。课文主要是让学生感受场景美,生活美,感知量词的用法,激发学生了解、观察大自然,并尝试用量词表达熟悉的事物。下面小编给大家带来关于最新高三数学分析教案如何写,希望会对大家的工作与学习有所帮助。

最新高三数学分析教案如何写

最新高三数学分析教案如何写精选篇1

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用__解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用__解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线__解题

最新高三数学分析教案如何写精选篇2

一、教学目标

【知识与技能】

掌握三角函数的单调性以及三角函数值的取值范围。

【过程与方法】

经历三角函数的单调性的探索过程,提升逻辑推理能力。

【情感态度价值观】

在猜想计算的过程中,提高学习数学的兴趣。

二、教学重难点

【教学重点】

三角函数的单调性以及三角函数值的取值范围。

【教学难点】

探究三角函数的单调性以及三角函数值的取值范围过程。

三、教学过程

(一)引入新课

提出问题:如何研究三角函数的单调性

(二)小结作业

提问:今天学习了什么?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:

思考如何用三角函数单调性比较三角函数值的大小。

最新高三数学分析教案如何写精选篇3

一、目标

知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、重点难点

教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

三、教学过程:

函数的赠与减、增减的快与慢以及函数的值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.

四、学情分析

我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。

五、教学方法

发现式、启发式

新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习

六、课前准备

1.学生的学习准备:

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:

1课时

八、教学过程

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问

1.判断函数的单调性有哪些方法?

(引导学生回答“定义法”,“图象法”。)

2.比如,要判断y=x2的单调性,如

何进行?(引导学生回顾分别用定义法、图象法完成。)

3.还有没有其它方法?如果遇到函数:

y=x3-3x判断单调性呢?(让学生短时

间内尝试完成,结果发现:用“定义法”,

作差后判断差的符号麻烦;用“图象法”,图象很难画出来。)

4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

(二)情景导入、展示目标。

设计意图:步步导入,吸引学生的注意力,明确学习目标。

(探索函数的单调性和导数的关系)问:函数的单调性和导数有何关系呢?

教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:

函数及图象单调性切线斜率k的正负导数的正负

问:有何发现?(学生回答)

问:这个结果是否具有一般性呢?

(三)合作探究、精讲点拨。

我们来考察两个一般性的例子:

(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)

问:能否得出什么规律?

让学生归纳总结,教师简单板书:

在某个区间(a,b)内,

若f'(x)>0,则f(x)在(a,b)上是增函数;

若f'(x)<0,则在f(x)(a,b)上是减函数。

教师说明:

要正确理解“某个区间”的含义,它必需是定义域内的某个区间。

1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。

2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。

3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。

4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。

应用导数求函数的单调区间

例1.求函数y=x2-3x的单调区间。

(引导学生得出解题思路:求导→

令f'(x)>0,得函数单调递增区间,令f'(x)<0,得函数单调递减区间→下结论)

变式1:求函数y=3x3-3x2的单调区间。

(竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。)

求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:

设计例1可引导学生得出用导数法求单调区间的解题步骤

设计变式1及竞赛活动可以激发学生的`学习热情,让他们学会比较,并深刻体验导数法的优越性。

巩固提高

变式2:求函数y=3ex-3x单调区间。

(学生上黑板解答)

变式3:求函数的单调区间。

设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。

设计变式3是可使学生体会考虑定义域的必要性

例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。

多媒体展示探究思考题。

在学生分组实验的过程中教师巡回观察指导。(课堂实录),

(四)反思总结,当堂检测。

教师组织学生反思总结本节课的主要内容,并进行当堂检测。

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)

(五)发导学案、布置预习。

设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。

九、板书设计

例1.求函数y=3x2-3x的单调区间。

变式1:求函数y=3x3-3x2的单调区间。

变式2:求函数y=3ex-3x单调区间。

变式3:求函数的单调区间。

十、教学反思

本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

最新高三数学分析教案如何写精选篇4

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

教学重难点

教学重点:熟练运用定理.

教学难点:应用正、余弦定理进行边角关系的相互转化.

教学过程

一、复习准备:

1.写出正弦定理、余弦定理及推论等公式.

2.讨论各公式所求解的三角形类型.

二、讲授新课:

1.教学三角形的解的讨论:

①出示例1:在△ABC中,已知下列条件,解三角形.

分两组练习→讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况.(A为锐角时)

②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

2.教学正弦定理与余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断

③出示例4:已知△ABC中,试判断△ABC的形状.

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

最新高三数学分析教案如何写精选篇5

一、教学目标

1、知识与技能

(1)理解对数的概念,了解对数与指数的关系;

(2)能够进行指数式与对数式的互化;

(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;

2、过程与方法

3、情感态度与价值观

(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析严谨认真的良好思维习惯和不断探求新知识的精神;

(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;

(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、

探索发现、科学论证的良好的数学思维品质、

二、教学重点、难点

教学重点

(1)对数的'定义;

(2)指数式与对数式的互化;

教学难点

(1)对数概念的理解;

(2)对数性质的理解;

三、教学过程:

四、归纳总结:

1、对数的概念

一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

2、对数与指数的互化

ab=n?logan=b

3、对数的基本性质

负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn

五、课后作业

课后练习1、2、3、4

最新高三数学分析教案如何写精选篇6

教学目标

(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

(2)能结合树形图来帮助理解加法原理与乘法原理;

(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议

一、知识结构

二、重点难点分析

本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

三、教法建议

关于两个计数原理的教学要分三个层次:

第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).

第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):

①用0,1,2,……,9可以组成多少个8位号码;

②用0,1,2,……,9可以组成多少个8位整数;

③用0,1,2,……,9可以组成多少个无重复数字的4位整数;

④用0,1,2,……,9可以组成多少个有重复数字的4位整数;

⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.

第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.

最新高三数学分析教案如何写精选篇7

【教学目的】

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

【重点难点】

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

【内容分析】

集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明。

    776479