2023八年级上册数学知识点概念总结
推荐文章
2023八年级上册数学知识点概念总结梳理
要想学好初二的数学,首先要端正自己的学习态度,养成良好的学习习惯。八年级上册的数学知识点有什么?下面是小编为大家整理的关于2023八年级上册数学知识点概念总结,欢迎大家来阅读。
八年级上册数学知识点概念总结
第一章 勾股定理
定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章 实数
定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数
(有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)
一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章 图形的平移与旋转
定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章 四边形性质探索
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
菱形 :一组邻边相等的平行四边形 ……(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形: 有一个内角是直角的平行四边形 ……(平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性质。 一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形: 一组对边平行而另一组对边不平行的四边形。 一组对边平行而另一组对边不平行的四边形是梯形 。
等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形 。
直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。
多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
第五章 位置的确定
位置表示方法:方位角加距离;坐标;经纬度……
定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。
通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。
图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称……
第六章 一次函数
定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。
正比例函数y=kx的图象是经过原点(0,0)的一条直线。
在一次函数y=kx+b中,
当k>0时,的值随值的增大而增大;
当k<0时,的值随值的增大而减小。
第七章 二元一次方程组
定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。
以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。
通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。
第八章 数据的代表
定义:一般地,对于n个数X1,X2,…Xn,我们把1/n(X1+X2+…+Xn)叫做这个数的算术平均数,简称平均数,记为X。
为A的三项测试成绩的加权平均数。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
初二上册数学常考知识
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3. 判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
四、利用相似三角形证明线段成比例的一般步骤:
1、“定”:先确定四条线段在哪两个可能相似的三角形中;
2、“找”:再找出两个三角形相似所需的条件;
3、“证”:根据分析,写出证明过程。
如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。
五、相似与全等:
全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:
1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。
2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。
常见考法
(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。
误区提醒
(2)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽视“夹角相等”这个重条件,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
八年级上数学课的学习方法
一、该记的记,该背的背,不要以为理解了就行
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解.打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具.同样,记不住数学的定义、法则、公式、定理就很难解数学题.而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手.
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系.最常见的等量关系就是“方程”.
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它.
2、“数形结合”的思想
初中数学的两个分支-代数和几何,代数是研究“数”的,几何是研究“形”的.但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”.
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对
应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等.