小学数学的基本公式总结
小学数学的基本公式总结大全
在平日的学习中,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。还在为没有系统的知识点而发愁吗?下面是小编为大家整理的小学数学的基本公式总结,欢迎参考~
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
小学数学常用知识
【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
【十进制计数法】每相邻的两个计数单位间的进率是十。这种计数方法叫做十进制计数法。
【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。一个数字所在的数位不同,表示的数的大小也不同。第一个数位称为个位,依次是十位,百位,千位,万位,十万位......
【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。余数比除数小。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
【第二级运算】在四则运算中,乘法和除法叫做第二级运算。
【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。
【约数和倍数】如果数a能被b(b不等于0)整除,a叫做b的倍数,b叫做a的约数或a的因数。倍数和约数是相互依存的。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身。例如,15能被3整除,我们就说15是3的倍数,3是15的约数。
【偶数】能被2整除的数叫做偶数,因为0也能被2整除,所以0也是偶数。
【奇数】不能被2整除的数叫做奇数。例如 1、3、5、7......
【质数】一个数,如果只有1和它本身两个约数,这样的数叫做质数或者素数。例如2、3、5、7、11都是质数。
【素数】素数就是质数。
【合数】一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。例如4、6、8、9、10、12......都是合数。
【质因数】每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
【分解质因数】把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如:12=3-2-2
【公约数】几个数公有的约数,叫做这几个数的公约数。
【最大公约数】在几个数的公约数中最大的一个,叫做这几个数的最大公约数。例如1,2,4是8和12的公约数;4是8和12的最大公约数。
【互质数】公约数只有1的两个数,叫做互质数。例如5和7是互质数,8和9也是互质数。
【公倍数】几个数公用的倍数,叫做这几个数的公倍数。
【最小公倍数】在几个数的公倍数中最小的一个,叫做这几个数的最小公倍数。例如12,24,36......都是4和6的公倍数,12是4和6的最小公倍数。
【单价数量总价】每件商品的价钱,我们叫它单价,买了多少,叫做数量,一共用了多少钱,叫总价。总价=单价×数量
【速度、时间、路程】每小时(或每分钟或者每天)行进的路程,我们叫它速度,行进了几小时(或几分钟或几天)我们叫它时间,一共行进多少路,我们叫它路程。路程=速度×时间
【加法交换律】两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。字母表示:a+b=b+a
【加法结合律】三个数相加,先把前两个数相加,再同第三个数相加;或先把后两个数相加,再同第一个数相加,它们的和不变。这叫做加法结合律。字母表示:(a+b)+c=a+(b+c)
【乘法交换律】两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。字母表示:a×b = b×a
【乘法结合律】三个数相乘,先把前两者相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫做乘法结合律。字母表示:(a×b)×c=a×(b×c)
【乘法分配律】两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配率。字母表示:(a+b)×c=a×c+b×c
【三、四位数的加法法则】(1)相同数位对齐;(2)从个位加起;(3)哪一位上的数相加满十,要向前一位进一。
【乘数是一位数的乘法法则】(1)从个位起,用乘数依次乘被乘数的每一位数;(2)哪一位上乘得的积满几十,就向前一位进几。0和任何数相乘都得0。
【两个因数和积的变化规律】一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)若干倍。
【除法中商不变的性质】在除法里,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
【乘法各部分间的关系】因数×因数=积 一个因数=积÷另一个因数
【除法各部分间的关系】被除数÷除数=商 除数=被除数÷商 被除数=商×除数
【乘法的验算方法】用所得的积除以一个因数,如果得到另一个因数,就是乘法做对了。
【除法的.验算方法】用除数和商相乘,如果得到被除数,或者用被除数除以商,如果得到除数,就是除法做对了。
【乘法的简便算法】三个数相乘,可以先把后面两个数相乘,再和第一个数相乘,结果不变。利用这个规律,有时一个数连续乘以两个一位数,改成乘以两个一位数的积,比较简便;有时一个数乘以两位数,改成连续乘以两个一位数,计算比较简便。
例如:
6×12×5=6×(12×5)
25×16=25×(4×4)=25×4×4
【除法的简便算法】一个数连续用两个数除,每次都能除尽的时候,可以先把两个除数相乘,用它们的积去除这个数,结果不变。利用这个规律,有时一个数连续除以2个一位数,改成除以这2个一位数的积,比较简便;有时一个数除以两位数,改成连续除以2个一位数,比较简便。
例如:
1000÷25÷4=1000÷(25×4)
420÷35=420÷7÷5
【解答应用题的步骤】(1)弄清题意,并找出已知条件和所求问题;(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么(3)确定每一步该怎样算,列出算式,算出得数;(4)进行检验,写出答案。
【检验应用题】(1)按照原来的题意,依次检查每一步列式和计算,看是否正确(2)把得数当作已知条件,按照题意倒看一步一步地计算,看结果是不是符合原来的一个已知条件。
【多位数的写法】(1)从高位起,一级一级地往下写;(2)哪个数位上一个数也没有,就在哪个数位上写0。
例如:七千零三亿零二十万写作700300200000
【加法各部分间的关系】和=加数+加数 加数=和-另一个加数
【减法各部分间的关系】差=被减数-减数 减数=被减数-差 被减数=减数+差
【加减法的简便运算】一个数连续减去两个数,等于这个数减去两个数的和。
例如130-46-34=130-80=50
【有余数除法各部分间的关系】被除数=商×除数+余数
【同级运算的顺序】一个算式里,如果只含有同一级运算,要从左往右依次计算。
【不同级运算的运算顺序】一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
例如100-7×5=100-35=65
小学数学公式总结 :
加法交换律:a+b=b+b
加法结合律:a+b+c=a+(b+c)
1、 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 、加数+加数=和
和-一个加数=另一个加数
7 、被减数-减数=差
被减数-差=减数
差+减数=被减数
8、 因数×因数=积
积÷一个因数=另一个因数
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
概念
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c