5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 八年级 > 八年级上学期数学教案

八年级上学期数学教案

晓芬0分享

八年级上学期数学教案5篇

数学是一面镜子,通过它我们能够反思和理解现实世界中存在的模式和规律,延伸我们的思维边界。这里给大家分享一些关于八年级上学期数学教案,供大家参考学习。

八年级上学期数学教案

八年级上学期数学教案篇1

教学内容:

(1)素质教育目标:

使学生理解轴对称图形和对称轴的概念,能准确判断一个图形是不是轴对称图形;

能找出和画出轴对称图形的对称轴;

培养学生的观察、比较、抽象、概括及实际操作能力;

培养学生的团结协作精神。

(2)教学重点:

理解轴对称图形和对称轴的概念,作对称轴的方法。

(3)教学难点:

选择和确定对称轴的位置和条数。

(4)教学准备:

铅笔、直尺、剪刀、画有平面图形的方格纸、印有轴对称图形的卡片。

(5)教学方法:

直观式、尝试式(6)教学过程:

1、导入

猜图形

(这里有一张美丽的图片,不过这还只是它的一半,猜猜这是什么?)

出示蝴蝶图形的一半,后整体出示------依次有蜻蜓、树叶图等。

这些图形有什么特点?(对称)

今天我们就一起来认识这类有对称特点的图形。(板书课题)

2、新授

(1)学生操作--剪图形

(什么是轴对称图形呢?请你利用手中的纸,通过折、画、剪,看看能得到什么样的图形。)

学生以学习小组为单位动手操作。

作品展示的同时让学生说出:剪出的图形沿着一条直线对折,左右两边能完全重合。

(2)揭示轴对称图形和对称轴的意义。

以上图形,如沿着中间的直线对折,两侧的图形能够完全重合。

指出:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。(显示对称轴)强调:对称轴是一条直线!

(3)练习反馈

你刚才剪的是什么图形?

以下图形中,哪些是轴对称图形?请指出对称轴的位置。

(课件出示)

(4)实践操作:在已学的平面图形中,哪些是轴对称图形,

学生以学习小组为单位进行讨论。(已备画好的图形)

汇报结果。重在突出对称轴的位置和条数。

将轴对称图形贴在黑板上。

课件演示对称轴的条数和位置。

得出:正方形、长方形、等腰三角形、等腰梯形、圆都是轴对称图形。有的对称轴不止一条。

(5)教学轴对称图形的基本性质

(轴对称图形沿着对称轴对折时,为什么左右两边完全相等?如果在对称轴两边有相应的两点,你还能发现什么?)

提示:用尺量一量。

学生动手量,分组讨论。

明确:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。

3、巩固练习

(你们能用所学的知识解决遇到的问题吗?)

(1)画出下列轴对称图形的对称轴。(卡片)

独立完成,集体订正。

(2)找出下图中的轴对称图形。

课件出示一幅画,指明答。

你还能说说实际生活中见到的轴对称图形吗?

(3)下面的数字,哪些是轴对称图形?各有几条对称轴?

0123456789

(4)动动脑,动动手

在钉字板上围出一个只有一条对称轴的四边形;一个只有两条对称轴的四边形。

指名上台演示。

4、课堂总结。

板书设计

八年级上学期数学教案篇2

教材分析

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

学情分析

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

教学目标

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

教学重点和难点

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

八年级上学期数学教案篇3

一、教材分析

本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。分式方程概念的学习,为分式方程的解法及运用的学习做了极为必要的铺垫。

二、教学目标及重点、难点

三维教学目标:

1.知识目标:从实际情境中抽象出分式方程的概念;

2.能力目标:通过列分式方程培养学生分析问题、解决问题的能力;

3.情感目标:培养学生的社会责任感及应用数学的意识。

教学重点:列分式方程

教学难点:列分式方程。

三、教育理念及教法依据:

采用建构主义教学模式,运用成功教育及赏识教育理念设计教学。

四、教学程序

1.情境1.

(出示)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

设计发问:(1)你能用自己的语言解释每一个数据的意义吗?

(2)你能尽可能从题目中找到等量关系吗?

答:①两块地的面积相等;

②第一块地的产量为9000kg;

③第二块地的产量为15000kg;

④第一块地的单位面积产量比第二块少3000kg;

(3)你还能找到哪些隐含的数量关系?

答:⑤总产量/总面积=单位面积产量

(4)如何选设未知数?(通常设直接未知数,如建立方程困难则选设间接未知数)

(5)哪些关系可以用来建立代数式?哪一个关系用来建立方程?

(6)如何建立方程?

解:设第一块试验田每公顷产量为xkg,则第二块试验田每公顷的产量是(x+300)kg.由题意得9000/x=15000/(x+3000).

(教师板书等量关系及所列方程)

设计意图:(1)以问题串的形式形成师生之间的对话,推进学生的思维,突破学习的难点;

(2)呈现列方程的通用方法:分析数据——找等量关系——设未知数——建立相关的代数式——建立方程;

(3)如果学生的回答思维跳跃较大,教师采取追问的方式,将思维的关键步骤凸显出来,使基础薄弱的学生也能积极地跟进;

(4)提醒学生:

①通常设一个未知数至少需要建立一个方程,设两个未知数至少需要建立两个方程;

②等量关系或用来列代数式或用来建立方程,不能重复使用;

③学会用代数式思考问题;

④列方程的思想要“深入人心”。

2.情境2.

(出示)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

组织教学:分成男生、女生两个阵营,就以上问题,一方同学依次发问,另一方依次应答。提问方围绕问题,想问什么就问什么,问清楚问透彻;应答方有问必答。

如,女生问:

(1)请解释题中数据的意义?

(2)题中有哪些数量关系?

男生答:路程:普通公路全长600km,高速公路全长480km;

速度关系:客车在高速公路上的速度比在普通公路上快45km/h;

时间关系:走高速所用时间是走普通公路用时的一半。

行程问题中三个量之间的基本关系:速度×时间=路程路程/速度=时间路程/时间=速度

女生问:如何设未知数?如何建立代数式?如何建立方程?

男生答:解:设客车由高速公路从甲地到乙地需要xh,则由普通公路从甲地到乙地需要2xh,根据题意,得600/x-480/2x=45.

女生追问:哪些数量关系被用来列代数式?哪些关系被用来建立方程?

男生答(略)

设计意图:

(1)变“师生问答”为“男生、女生的问答”,将问题的分析解决变成一个双方斗智的游戏,一个模拟的思维游戏,易激发学生的学习兴趣;

(2)在问答中不同阵营的学生可以追加发问,可以补充回答,通过问题的解决既培养斗智斗勇的竞争意识,又培养团队合作精神;

(3)教师要做一个好的观察者,适当指导,保证学生思维是活跃的,思维方向是正确的;

(4)同时注意控制教学时间。

3.情境3.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。求两次捐款人数各是多少。

组织教学:双方阵营互换角色

解:设第一次捐款人数为x人,则第二次捐款人数为(x+20)人,

由题意,得4800/x=5000/(x+20).

4.形成概念

问(1)以上所列的方程有什么共同特点?

学生归纳形成概念:分母中含有未知数的方程叫做分式方程。

问(2)“分式方程”与“分式”有何不同?“分式方程”与“整式方程”有何不同?

(3)判断:下列关于x的方程,是分式方程的是?

a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.

设计意图:通过新旧概念的比较明确新概念,通过判断强化新概念。

5.(人人过关)

练习1.据联合国《20_年世界投资报告》指出,中国20_年吸收外国投资额达530亿美元,比上一年增加了13%。设20_年我国吸收外国投资额为x亿美元,请你写出x满足的方程。你能写出几个方程?其中哪一个是分式方程?

教学设计:

(1)突破难点:百分数13%是“比谁增加了13%”?

(2)每位学生至少列出三个方程;

(3)学生独立解题,教师板书学生的答案,供大家彼此借鉴,互相学习。

练习2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,6h完成了一半任务,后来机械装运和人工装运同时进行,1h完成了后一半任务。如果设单独采用机械装运xh可以完成后一半任务,那么x满足怎样的方程?

教学设计:

(1)本题是工程问题的情境;

(2)学生独立完成,互相交流答案,教师点评。

6.课堂小结:

(1)本节课你有什么收获?还有什么疑问吗?(小组交流,派代表发言)

(2)在双方问答的对决中,哪个阵营思维更活跃,更具合作意识,请表决,并为胜方热烈鼓掌。

八年级上学期数学教案篇4

一、教学目标

【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣。有合作交流的意识。动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点

【重点】角的平分线的性质的证明及应用。

【难点】角的平分线的性质的探究。

三、教学过程

(一)导入新课

1、复习角平分线的画法

2、利用PPT创设情景:

如图是小明制作的风筝,他根据AB=AD,BC=DC。不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?

(二)生成新知

探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演。教师纠正答案)

如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开。观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论。

0011。jpg

∴△PDO≌△PEO(AAS)

∴PD=PE。

(三)深化新知

思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)

(四)应用新知

1、例题:解决导入中PPT的问题

2、练一练:下面四个图中,点P都在∠AOB的平分线上,则图形_____中PD=PE。

(五)小结作业

小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

八年级上学期数学教案篇5

知识结构

重点与难点分析:

本节内容的重点是角平分线的性质定理,逆定理及它们的应用。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。

本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。

教法建议:

整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)做好铺垫

新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。

(2)主动获取

利用上面的图形,观察这两个距离的关系,并证明自己的结论。对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不是很准确,此时教师要做指导。这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。

(3)激荡思维

在上面定理的基础上,让学找出此定理的条件与结论,并交换条件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。此时顺理成章地引出教材中的定理2。

最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。这一环节完全是由学生给出定理的文字表述及证明过程。

(4)推向深入

进行必要的例题讲解,然后进行有层次阶梯性训练,以达到熟练地运用定理证明有关问题。教学时,要注意引导学生分析问题解决问题的思考方法。同时让学生总结积累证明线段相等、角相等的常见方法。

教学目标:

1、知识目标:

(1)掌握角平分线的性质定理和逆定理;

(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;

(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.

2、能力目标:

(1)通过“判断题”的练习,提高学生的辨析能力;

(2)通过公理的初步应用,培养学生的逻辑推理能力及创新的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征。

教学重点:

角平分线的性质定理,逆定理及它们的应用。

教学难点:

a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。

教学用具:直尺,微机

教学方法:谈话法

教学过程:

1、新课引入

投影显示

问题:

(1)画一个;

(2)在这条平分线上任取一点P,标出P点到角两边的距离。

(3)说出这两段距离的关系并证明。

2、定理的获得

让学生用文字语言叙述出定理的内容

角平分线的性质定理:在角平分线上的点到这个角两边距离相等。

强调说明:

(1)定理的条件及结论的符号表示;

(2)定理的作用:直接证明两线段相等。使用的前提是有,关键是图中是否有“垂直”。

3、运用逆向思维,导出定理的逆定理

问题:将定理的条件与结论“换位”得到一个新命题,说出这个新命题的内容,并判断命题是真命题还是假命题?学生分析、讨论用文字叙述内容,老师作必要的提示。

逆定理:到一个角的两边距离相等的点,在这个上。

强调:a逆定理的作用:证明角相等

b、二定理的区别与联系:性质定理说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;判定定理反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。实际应用中,前者用来证明线段相等,后者用来证明角相等(角平分线)

4、原命题与逆命题

a、概念

b、写出互逆命题的关键。

c、原使命与逆使命的真假性并无一定的依存关系。

5、定理的应用(投影四个例题)

例1、已知:如图1,△ABC的角平分线BM、CN相交于点P.

求证:点P到三边AB、BC、CA的距离相等.

学生先分析,教师巡视并适当点拨。

投影显示学生的证明过程,师生共同纠正补充完善。

投影规范的书写格式:

(见书中例题)

此题设想:

(1)语言要规范。例“过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F”这一段话一定要在证明中写出。

(2)几何证明中,常见“同理”二字,讲清“同理”适用的条件以免以后乱用。

例2、已知:如图2,PB、PC分别是△ABC的外角平分线,相交于点P.

求证:P在∠A的平分线上

证明:(略)

设想:(1)证明“点在线上”这类问题的解决方法

(2)“一般解题方法”的运用

(3)投影显示学生的书写步骤,检查学生数学语言是否规范。

例3、写出下列命题的逆命题,并判断它们是真命题还是假命题

(1)全等三角形的对应角相等;

(2)对顶角相等;

(3)如果,那么;

(4)直角三角形的两个锐角互余.

例4、已知:如图3,PB⊥AB,PC⊥AC,PB=PC,D是AP上一点

求证:∠BDP=∠CDP

证明:(略)

设想:一般解题方法的教学。

6、课堂小结:教师引导学生总结

(1)角平分线的性质定理及逆定理;

(2)二定理的关系;

(3)一般解题方法

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

(a)书面作业P80#9

(b)思考题:

(1)已知:如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.

求证:∠A+∠C=

(2)求证三角形的三条内角平分线交于一点。

板书设计:

探究活动

如图,公路南有一学校在铁路的东侧,到公路的距离与到铁路的距离相等,并且与两路交叉处O的距离为400米,在图上标出学校的位置,并说明理由(比例尺1:10000)。

提示:解决这类问题的方法是把实际应用问题转化为数学问题,然后用数学知识解决。

解:把公路、铁路看作两条相交直线,画出它们交,在上,从顶点量出表示实际400米长的线段便可确定学校的位置。表示实际400米长的线段为:0.04米=4cm

    850654