优秀初三数学上册教案
优秀初三数学上册教案优秀5篇
数学是一门启迪心灵的学科,它激发了我们对美的追求和对世界的探索,开启了无限可能的思维之门。这里给大家分享一些关于优秀初三数学上册教案,供大家参考学习。
优秀初三数学上册教案篇1
教学内容
24。2圆的切线(1)
教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题
通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力
教学重点 切线的识别方法
教学难点 方法的理解及实际运用
教具准备 投影仪,胶片
教学过程 教师活动 学生活动
(一)复习 情境导入
1、复习、回顾直线与圆的三 种位置关系。
2、请学生判断直线和圆的位置关系。
学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法。(板书课题) 抢答
学生总结判别方法
(二)
实践与探索1:圆的切线的判断方法 1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。
2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线 。
3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:
(1)直线 经过半径 的外端点 ;
(2)直线 垂直于半径 。这样我们就得到了从位 置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。 理解并识记圆的切线的几种方法,并比较应用。
通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。
三、课堂练习
思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?
请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径。
请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)
(图1) (图2) 图(3)
图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端。 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线。
最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。 试验体会圆的位置判别方法。
理解位置判别方法的两个要素。
(四)应用与拓展 例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?
例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙ O的切线吗?为什么?
分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。
教师板演,给出解答过程及格式。
课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。
注意圆的切线的特征与识别的区别。
(四)小结与作业 识 别一条直线是圆的切线,有 三种方法:
(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2)。
各抒己见,谈收获。
(五)板书设计
识别一条直线是圆的切线,有三种方法: 例:
(1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径
(六)教学后记
教学内容 24。2圆的切线(2) 课型 新授课 课时 执教
教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。
教学难点 三角形的内心及其半径的确定。
教具准备 投影仪,胶片
教学过程 教师 活动 学生活动
(一)复习导入:
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)
你能说明以下这个问题?
如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
回顾旧知,看谁说的全。
利用旧知,分析解决该问题。
(二)
实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以 上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线
平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
(三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。
解:(1)连结PA、PB、EF是⊙O的切线
所以 , ,
所以 的周长 (2)因为PA、PB、EF是⊙O的切线
所以 , ,,
所以
所以
画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。
(四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好
(五)板书设计
切线(2)
切线长相等 例:
切线长性质
点与圆心连 线平分两切线夹角
(六)教学后记
优秀初三数学上册教案篇2
课题 二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是S=πR2;
(2)函数析式是S=30L—L2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
按照描点法分三步画图:
(1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结
1.二次函数的定义。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
2.二次函数y=x2的图象。
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2; (2)y=x (x-4);
(3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。
作业:P122中A组1,2,3。
四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。(答:具有对称性。)
(2)如何判断y=x2的.图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)
课题 二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是S=πR2;
(2)函数析式是S=30L—L2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
按照描点法分三步画图:
(1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结
1.二次函数的定义。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
2.二次函数y=x2的图象。
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2; (2)y=x (x-4);
(3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。
作业:P122中A组1,2,3。
四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。(答:具有对称性。)
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)
优秀初三数学上册教案篇3
【知识与技能】
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
【过程与方法】
经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
【情感态度】
体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.
【教学重点】
二次函数的概念.
【教学难点】
在实际问题中,会写简单变量之间的二次函数关系式教学过程.
一、情境导入,初步认识
1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(2)与相邻于围墙面的每一面墙的长度x()的关系式是S=-2x2+100x,(0<x<50);电脑价格(元)与平均降价率x的关系式是=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.< p="">
2.对于实际问题中的`二次函数,自变量的取值范围是否会有一些限制呢?有.
二、思考探究,获取新知
二次函数的概念及一般形式
在上述学生回答后,教师给出二次函数的定义:一般地,形如=ax2+bx+c(a,
b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.
优秀初三数学上册教案篇4
学习目标
1、一元二次方程的求根公式的推导
2、会用求根公式解一元二次方程.
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯
学习重、难点
重点:一元二次方程的求根公式.
难点:求根公式的条件:b2 -4ac≥0
学习过程:
一、自学质疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2-4ac≥0时,它的根是
用求根公式解一元二次方程的方法称为公式法
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.
(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)
(2)求出b2-4ac的值.(先判别方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根.
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、纠正反馈:
做书上第P90练习。
六、迁移应用:
例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.
例4、求方程 的两根之和以及两根之积
拓展应用:关于 的一元二次方程 的一个根是 ,则 ;
方程的另一根是
优秀初三数学上册教案篇5
一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10.
学生练习:书本P4练习
(四)总结反思 拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.
(五)布置作业
(1)必做题P4 习题1.1A组 1.2
(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。