2020五年级数学因数倍数知识点总结与小学数学学习方法
在数学学科中,“数”与“形”就像一对形影不离的亲兄弟,小偏整理了2020五年级数学因数倍数知识点总结与小学数学学习方法,感谢您的阅读。
2020五年级数学因数倍数知识点总结
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。 一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1) 个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系:奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1: 只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数
6、最大、最小
A的最小因数是:1;A的最大因数是:A; A的最小倍数是:A; 最小的自然数是:0;
最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质; ⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…16的倍数有:16、32、48、…最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×316=2×2×2×2
最大公因数是:
2×2=4(相同乘)
最小公倍数是:
2×2×3×2×2= 48(相同乘×不同乘)
小学数学学习方法
观察法
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、真切,在观察中要动脑,要想出道理、找出规律。
假设法
当遇到一些条件少、无法下手的题目时,我们可假设一些简单好算的数量,或将运动变化的问题假设或静止特殊的问题。
对条件多、无法理清头绪的题目,将其中几个不同的条件假设相同等等,这样将会冲破常规思维的禁锢,获得巧解,这也是灵活应用极端化的策略。
逆推法
大家都知道司马光砸缸的故事,一般从正面想,将人从水缸中捞出,即人离开水,但捞人费时费力,不敢延误时间,聪明的司马光从反面想,让水离开人,太简单了——砸烂水缸。这种方法在数学上叫逆推法,也叫还原法,即从最后结果逆推,这是解决数学问题的一种方法。
代数法
在解答数学问题时,用字母代替未知数,根据等量关系列出方程,从而求出结果,这种方法称为代数法。学会用代数法解题,好比掌握了解题的金钥匙。
数形结合
在数学学科中,“数”与“形”就像一对形影不离的亲兄弟,几乎所有的数量关系或数学规律都可以用直观的示意图来反映。
解题时如果能用到数形结合的策略分析解答,就会充分发挥“数”与“形”的互助作用,使问题非常直观、易懂、收到不解自明的效果。
分类讨论
解题方法立足数学通法,试题注重数学思想、方法的考查、充分体现了多种思想方法,而分类讨论要综合多种数学问题解决的方法策略,旨在训练良好的审题习惯,严谨的思维习惯,周密的推理习惯,这都是获取高分的必备要素。