初中数学有理数的减法知识点归纳2021
学习数学并非我做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,下面是小偏整理的初中数学有理数的减法知识点归纳2021,感谢您的每一次阅读。
初中数学有理数的减法知识点归纳2021
学习目标
1.掌握有理数的减法法则.
2.熟练地进行有理数的减法运算.
3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.
知识重点
有理数减法法则:减去一个数,等于加这个数的________,即a-b=a+(-b).
精典范例
知识点一有理数减法法则
例1下列运算正确的是()
A.(-3)-(+5)=(+5)-(-3)=+2
B.(+3)-(-5)=(+3)+(+5)=+8
C.(-3)-(-5)=(-3)+(+5)=-2
D.(-3)-(+5)=(-3)+(-5)=-2
例2(1)(教材P23练习第1题节选)计算:
①(+4)-(-7);②(-5)-(-8);③0-(-5).
(2)(教材P25习题1.3第4题节选)计算:
①21-31;②(-2)-32;
③43-41-21.
知识点二有理数减法法则的实际应用
例3某矿井下A,B,C三处的海拔分别为-32.5米,-120.7米,-63.8米.
(1)B处比C处高多少米?
(2)A处比C处高多少米?
变式练习
变式1计算:
(1)0-2=0+________=________;
(2)7-9=7+________=________;
(3)3-(-3)=3+________=________;
(4)-7-9=-7+________=________.
变式2(1)(2019·台湾)算式-35-(-61)之值为何?()
A.-23B.-34
C.-611D.-94
(2)(2018·山东淄博)计算21-21的结果是()
A.0B.1
C.-1D.41
(3)计算:-5-(-3)-(-4)-[-(-2)].
变式3某同学在计算时-387-N,误将-N看成了+N,从而算得结果是543,请你帮助算出正确结果.
巩固练习
1.(2019·河池)计算3-4,结果是()
A.-1B.-7
C.1D.7
2.(2019·遵义)遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()
A.25℃B.15℃
C.10℃D.-10℃
3.下列说法正确的是()
A.0减去一个数,仍得这个数
B.负数减去负数,结果是负数
C.正数减去负数,结果是正数
D.被减数一定大于差
4.有下列计算:①(-4)-|-4|=0;②41-21=-21;③0-(+5)=-5;④(-5)-(-4)=-1.其中正确的有()
A.1个B.2个
C.3个D.4个
5.(2019·玉林)计算:(-6)-(+4)=________.
6.(2018·四川南充)某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为________℃.
7.计算:
(1)(-61)-(-71)-|-8|-(-2);
(2)(-20)-(+3)-(-5)-(+7);
(3)0-(+3)-(-5)-(-7)-(-3);
(4)(+20)-(-10)-(-12)-(+5)-(+26).
8.下列结论错误的是()
A.若a>0,b<0,则a-b>0
B.a0,则a-b<0
C.若a<0,b<0,则a-(-b)<0
D.若a<0,b<0,且|a|>|b|,则a-b>0
9.有理数a,b在数轴上对应的点的位置如图,则计算|a-b|的结果为()
A.a+bB.a-b
C.b-aD.-a-b
10.若数轴上A,B两点表示的有理数分别是-621和743,则A,B两点之间的距离为________.
11.已知a,b互为相反数,且|a-b|=6,求b-1的值.
12.已知|m|=37,|n|=31,且|m+n|=-(m+n),求m-n的值.
计算方法
【考点】有理数计算【难度】★★★★☆
在数1,2,3,4……1998,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分)
【解析】
最小的非负数为“0”,但是1998个正数中有999个奇数,999个偶数,他们的和或者差结果必为奇数,因此不可能实现“0”
可以实现的最小非负数为“1”,如果能实现结果“1”,则符合题意
相邻两数差为1,所以相邻四个数可以和为零,即n-(n+1)-(n+2)+n+3=0
从3,4,5,6……1998共有1996个数,可以四个连续数字一组,和为零
【答案】
-1+2+3-4-5+6+7……+1995-1996-1997+1998=1
【改编】
在数1,2,3,4……n,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?
【解析】
由上面解析可知,四个数连续数一组可以实现为零
如果n=4k,结果为0;(四数一组,无剩余)
如果n=4k+1,结果为1;(四数一组,剩余首项1)
如果n=4k+2,结果为1;(四数一组,剩余首两项-1+2=1)
如果n=4k+3,结果为0;(四数一组,剩余首三项1+2-3=0)
四、【考点】绝对值化简【难度】★★★★☆
【101中学期中】
将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____
【解析】
绝对值化简得:当a≥b时,原式=b;当a
所以50组可得50个最小的已知自然数,即1,2,3,4……50
【答案】1275
【改编】
这50个值的和的最大值为____
【解析】
因为本质为取小运算,所以100必须和99一组,98必须和97一组,最后留下的50组结果为:1,3,5,7……99=2500
初中数学有理数的减法知识点归纳2021相关文章: