初中生数学最快的提高方法2021
在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。下面是小偏整理的初中生数学最快的提高方法2021,感谢您的每一次阅读。
初中生数学最快的提高方法2021
误区及策略
误区一:平时是龙、考试是虫
在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。
教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。
调整策略:第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。
误区二:忽略数学概念
有不少的学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。
例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现“-a是负数”,“a>-a”,“a+b≥a”等一系列错误。
这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易!
调整策略:第一步:记住概念,理解概念;第二步;“咬文嚼字”,抓住关键词,吃透概念;第三步:联系前后相关知识,深入理解概念;第四步:对照题目条件,联想、对比相应概念;第五步:积累经验,精选题目,注意类型,勤于总结。
误区三:有押题的心理
有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。
调整策略:一让自己花点时间整理最近解题的题型与思路;二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。
如:在“无理方程”的教学中,归纳出解法:①去分母法;②换元法;对于换元法给予归纳出两种常见的题型:A平方型;B倒数型。又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“F”,内错角找字母“N”,同旁内角找字母“L”。只有不断的总结,才能有创新和发展。
误区四:不能举一反三
这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:一是所给题目条件有限制,不能完全适用于公式;二是公式本身也有限制条件,并非适用所有题目的求解。
如:解方程:(a+1)x2-2x+5=0。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“a+1”是否为0作出讨论,分别就两种情况求解。
调整策略:一是不仅记住公式,更要记住公式的适用条件与范围;二是对照公式,仔细审题,看清哪些适用,哪些需另做讨论。
误区五:题海战术
学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。
调整策略:以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。
初中数学的过渡及衔接方法
一、转变学习习惯
小学生学数学有三种不同的类型:
1.记忆型:这种学生的学习方法是大量做题,然后记背做过的题,考试时靠记忆解题。这种学生用记忆代替思维,思维能力没有得到有效的训练和提升。当他们进入初中后,由于初中数学内容增多,难度明显增大,难以理解也记不住,因此,这种学生很快就出现学习困难,成绩一落千丈。
2.模仿型:这种学生的学习方法是模仿老师讲的例题和做过的练习题,考试时用模仿类型题的方法解题。这种学生训练出来的是模仿性思维,思维能力提升甚少,当他们升入高中后,由于高中的题型太多,千变万化,他们已经很难模仿,学习很累,事倍功半,成绩自然不理想。
3.思维型:这种学生的学习方法是通过思考、寻找知识与题目的联系,通过做通做透一题,学会一片题。考试时活用知识解题,这种学生的思维能力得到有效的训练,升入高中后,能够做到举一反三、融会贯通,这样既能适应高中的学习,又能轻松考高分。
由此可知,小学升入初中后,不能再用记忆、模仿的思维方式学习,必须转变学习习惯。
二、思维模式
小学升入初中后,由于初中数学知识明显加宽,难度明显加大,对学生思维能力的要求自然增强。这些能力主要包括以下六种:
①理性思维能力
②逆向思维能力
③多角度思维能力
④抽象问题的思维能力
⑤复杂问题的思维能力
⑥陌生问题的思维能力
学生如果不具备这些思维能力,学习肯定会受影响,轻者学习跟不上,重者会导致厌学。而这些思维,全部都可以通过训练提升。
三、必须掌握的学习方法
有人认为,学好数学就是要认真听课,认真做作业,大量做题,有错必改,经常复习。就是要“头悬梁,锥刺股”,要和疲劳顽强抵抗,用刻苦与之抗争。对于这种做法,专家认为:“精神诚可贵,效果未必好”。因为学习本身是一门科学,讲究技术、方法和技巧。真正学习好的学生,你会发现他不用怎么花时间就可以学得很好。因此,小升初的学生必须开始掌握学习方法,主要包括以下几个方面:
①深入知识的本质,了解知识的联系和规律,做到融会贯通;
②做题时要一题多解、多解归一、多题归一,通过做题善于总结,善于发现规律,总结规律;
③主动学习,超前思维,对于书本的例题,在老师未讲之前提前思考,在老师讲时与之对比,这样可以大大提高效率。