数学所有证明定理备考2021中考指导
很难拿到高分。平时,试卷也做了不少,可是考试碰到“没见过”的题或压轴就没思路,这该怎么办?下面是小偏整理的数学所有证明定理备考2021中考指导,感谢您的每一次阅读。
数学所有证明定理备考2021中考指导
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;
这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;
根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式
常用的数学思想方法:
(1)数形结合的思想方法。
(2)待定系数法。
(3)配方法。
(4)联系与转化的思想。
(5)图像的平移变换。
四、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、等腰梯形同一底上的两个角相等。
11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。
12、圆内接四边形的任何一个外角都等于它的内对角。
13、同弧或等弧所对的圆周角相等。
14、弦切角等于它所夹的弧对的圆周角。
15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、全等三角形的对应角相等。
17、相似三角形的对应角相等。
18、利用等量代换。
19、利用代数或三角计算出角的度数相等
20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
(1)定义、在同一平面内不相交的两条直线平行。
(2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。
(3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
(4)平行四边形的对边平行。
(5)梯形的两底平行。
(6)三角形(或梯形)的中位线平行与第三边(或两底)
(7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
(1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
(2)直角三角形的两直角边互相垂直。
(3)三角形的两个锐角互余,则第三个内角为直角。
(4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
(5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
(6)三角形(或多边形)一边上的高垂直于这边。
(7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
(8)矩形的两临边互相垂直。
(9)菱形的对角线互相垂直。
(10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
(11)半圆或直径所对的圆周角是直角。
(12)圆的切线垂直于过切点的半径。
(13)相交两圆的连心线垂直于两圆的公共弦。
初中数学成绩差无非这四种问题
1
听得懂,不会做
上数学课都能听懂,老师讲题也能搞明白,可是碰到作业、考试的时候就突然不会做了。
很多同学,一旦脱离老师的“带领”,就一点解题思路也没有,考试当然考不好。
这其实是由于同学没有“主动思考”的习惯和训练。正确的数学学习方法可以帮助同学养成“主动思考”的习惯,掌握解题技巧。
【解决方案】
掌握正确的数学学习方法:
① 课前预习,大致了解这堂课要学习的知识,以及记录预习过程中遇到的疑问;
② 上课时紧跟老师思路,注意比较与自己思路的异同;
③ 做作业前先复习本日知识点,然后再做练习题,做完后一定要分析错题,找出自己的知识疏漏。
2
平时题都会,考试常“失误”
平时在做作业、做习题的时候都能做得出,可是一到考试就“失误”,总是考不好!
这种情况不能归结于“失误”,根本问题还是在于练习不够,能力不足。
由于在平时做练习时相对放松,“全力攻克”难题自然不在话下,但到考场中,因为已经被前面的题目耗费了一定精神和脑力,碰到难题也就只能“勉强应对”,结果自然差强人意。
【解决方案】
掌握正确的数学训练方法:
① 刻意进行限时做题训练,确保习惯考场节奏;
② 提高平时练习的难度,从容应对考场的压力。
3
考试“粗心”
数学还可以,但是考试总是“粗心”,简单题都错成一片,考试总是考不好。
简单题错得多,不能单纯归结为粗心表面上的“粗心大意”,本质上还是基础不扎实,漏洞太多导致的。
【解决方案】
从现在起,查找漏洞、巩固基础:
① 从平时的作业入手,查找漏洞;
② 在新课学习过程中,及时巩固已学知识。
4
新题、难题不会,分不高
很难拿到高分。平时,试卷也做了不少,可是考试碰到“没见过”的题或压轴就没思路,这该怎么办?
压轴题通常是对多个知识点的综合考查,不仅需要扎实基础,还要具备比较高的数学思维能力,而有些新题型的考查重点则是同学解题思路的拓展和创新,这些都并非单纯题海战术可以应对的。
【解决方案】
平时练习时,不靠感觉走,每道题都经过分析,条件应该怎么转化,未知量和已知量如何结合,怎么借助学过的知识,定理?做过的题目进行举一反三,比如,换个条件会如何?条件和结论交换下还能解吗?多找几种方法解题等。
数学所有证明定理备考2021中考指导相关文章:
★ 中考提高数学成绩满分攻略技巧2021 - 5068儿童网
★ 中考物理备考复习需要数学的辅助支持2021 - 5068儿童网
★ 中考数学利用最后一个月复习备考2021 - 5068儿童网
★ 中考数学解题方法复习的四点建议2021 - 5068儿童网
★ 中考数学知识技巧进一步复习方法2021 - 5068儿童网