有理数乘方人教版数学七年级上册教案

嘉红0分享

求相同因数的积叫做乘方。乘方运算的结果叫幂。正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。以下是小编整理的有理数乘方人教版数学七年级上册教案,欢迎大家借鉴与参考!

1.5.1有理数的乘方教案

教学目标

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

2.能将用科学记数法表示的数还原为原数.(重点)

教学过程

一、情境导入

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,2014年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

二、合作探究

探究点一:用科学记数法表示大数

例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为(  )

A.167×103 B.16.7×104

C.1.67×105 D.1.6710×106

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

例2 2014年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元(  )

A.9.34×102 B.0.934×103

C.9.34×109 D.9.34×1010

解析:934千万=9340000000=9.34×109.故选C.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数

例3 已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=20100;

(2)6.070×105=607000;

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|<10,n是正整数.

(3)n比原数的整数位数少1.

教学反思

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

《1.5.1乘方》同步练习题

12.观察下列三行数:

2,-4,8,-16,…;①

-1,2,-4,8,…;②

3,-3,9,-15,….③

(1)第①行数按什么规律排列?

(2)第②、③行数与第①行数分别有什么关系?

(3)取每行数的第9个数,计算这三个数的和.

解析 (1)后一个数是前一个数乘-2得到的.

(2)第②行每个数是第①行相应位置上的数除以-2得到的;第③行每个数是第①行相应位置上的数加1得到的.

《1.5有理数的乘方》同步练习

11.[2016·舟山]13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为(  )

A.42 B.49 C.76 D.77

12.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.

13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.

(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?

(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?


有理数乘方人教版数学七年级上册教案相关文章:

2021最新人教版数学七年级上册教案

5068教学资源网

5068教学资源网

最新七年级上册数学教案华东师大例文

北师大七年级上册数学教案2021文案

数学7年级上册的教学计划模板

七年级数学上册教学计划人教版范文

数学七年级上册教学计划人教版模板

七年级数学上册第三章第一节教案最新模板

人教版七年级上册数学教案2021模板

    201333