小学数学各年级知识点归纳整理
推荐文章
小学数学各年级知识点归纳整理大全
知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用,那么关于小学数学知识点有哪些呢?以下是小编准备的一些小学数学各年级知识点归纳整理,仅供参考。
小学数学1-6年级13个重点模块知识点汇总
数与代数
1、自然数包括正整数和0,所以最小的自然数是0,没有最大的自然数。
2、计数单位是指:个、十、百、千、万、十万、百万、千万、亿„„等等。
3、每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、能被2整除的数叫做偶数。0也是偶数。不能被2整除的数叫做奇数。
5、一个数,如果只有1和它本身两个约数,这样的数叫做质数,如2、3、5、7、11、13等等;
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、10都是合数。
6、最小的自然数是0,最小的质数是2,最小的合数是4。公因数只有1的两个数叫做互质数。
7、为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。如·1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位
的数12.543 亿。
8、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13 亿。
9、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
10、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
11、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
12、分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
13、比、比例、比例尺、百分数的后面不能带单位。
运算法则
1、同级运算,从左往右。(加和减是第一级运算,乘和除是第二级运算)
2、两级运算,乘除优先,加减在后。
3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
运算定律
1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)
5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c
运算性质
1、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即
a-b-c=a-(b+c)
2、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,即
a÷b÷c=a÷(b×c)
3、被减数-减数=差,被除数÷除数=商。
式与方程
1、含有未知数的等式就是方程,如x+5=6
2、解方程的步骤:
①去分母
②去括号
③移项
④合并同类项
⑤系数化为1
3、列方程解应用题的步骤:
①审题,用x表示未知数。(一般问什么就设什么)
②找出等量关系,列方程。(这一步最最重要)
③解方程。
④检验、写出答案。
常见的量
1、长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
2、面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
3、体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
4、重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
5、人民币单位换算
1元=10角
1角=10分
元=100分
6、时间单位换算
1世纪=100年
1年=12月
大月(31天)有:18 月
小月(30天)的有:49 月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
闰年:4年一闰,100年不闰,400年再闰。(如:2008是闰年,1900年不是闰年,2000年是闰年。)
1日=24小时
1时=60分
1分=60秒
1时=3600秒
几何形体周长、面积、体积计算公式
1、长方形的周长=(长+宽)×2
C=(a+b)×2
2、正方形的周长=边长×4
C=4a
3、长方形的面积=长×宽
S=ab
4、正方形的面积=边长×边长
S=a·a= a²
5、三角形的面积=底×高÷2
S=ah÷2
6、平行四边形的面积=底×高
S=ah
7、梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
8、直径=半径×2
d=2r
半径=直径÷2
r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2
C=π d =2πr²
10、圆的面积=圆周率×半径×半径
S=πr
11、长方体的体积=长×宽×高
公式:V=abh
长方体(或正方体)的体积=底面积×高
公式:V=sh
12、正方体的体积=棱长×棱长×棱长
公式:V=aaa=a³
圆柱和圆锥的公式
1、圆柱:两个底面是相同的圆,有无数条高,侧面展开是一个长方形或正方形。
2、圆锥:一个底面是一个圆,只有1条高,侧面展开是一个扇形。
3、如果一个圆柱和圆锥等底等高,那么,这个圆柱是圆锥体积的3倍,圆锥是圆柱体积的1/3。
正、反比例
1、12个字:除正乘反,正比例:比值一定;反比例:乘积一定。(判断的依据)
2、一般式:
正比例:y/x= k或y=kx(k一定)
反比例:xy=k或y = k/x(k一定)
3、图像:
正比例:一条直线
反比例:一条曲线
4、判断依据就是看两个相关联的量的比值或乘积是否一定,若比值一定,则是正比例;若乘积一定,则是反比例;若都不符合,则为不成比例。
比例尺
1、图上距离与实际距离的比,就是比例尺。比例尺没有单位。
2、1:100的意思是:图上1厘米代表实际距离100厘米。
3、三个公式:
比例尺=图上距离÷实际距离;
实际距离=图上距离÷比例尺
图上距离=比例尺×实际距离
4、方向:上北下南左西右东
5、千米化厘米添5个“0”,厘米化千米去掉5个“0”。
6、解决有关比例尺的问题,一是要统一化成低级单位;二是要熟记比例尺的三个公式。
7、图形的放缩:我们可以把小图放大,也可以把大图缩小,但只有把原图的长和宽放大或缩小相同的倍数,才能画得像。(如3:2=6:4=9:6等等)
找规律
看差看商、看某数的平方或立方、隔开看、分组法等等。
线与角
1、直线无端点,不可度量;射线1个端点,不可度量;线段两个端点,可度量。
2、从直线外一点到直线的线段中,垂直线段最短。这条垂直线段叫做点到直线的距离。
3、锐角:小于90度的角;
直角:等于90度的角;
钝角:大于90度的角小于180度的角;
平角:等于180度的角;
周角:等于360度的角。三角形的内角和为180度。
统计与概率
1、三种统计图:
条形统计图(表示各个量的多少)、
折线统计图(表示数量多少、反映增减变化)
扇形统计图(表示部分与整体的关系)。
2、平均数:几个数量的和除以数量的个数;
中位数:数据从大到小或从小到大排列,最中间的一个或最中间的两个的平均数。
众数:在一组数据中出现次数最多的数。
3、事情的发生有三种情况:
第一种是必然事件:一定会发生的事件,概率是1
第二种是不可能事件:一定不会发生的事件,概率为0
第三种是随机事件(也叫可能事件):可能发生也可能不发生的事件,概率是大于0小于1。
小学低年级数学知识点
第一单元 数据整理与收集
1.学会用“正”字记录数据。
2.会数“正”,知道一个“正”字代表数量5。
3.根据统计表,会解决问题。
4.数据收集---整理---分析表格。
第二单元 表内除法(一)
1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
例:24本练习本,平均分给6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
例:24本练习本,每人4本,能分给多少人?
列式:24÷4=6
3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
例如:12÷4=3读作(12除以4等于3)
例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。
4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)
5.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
例:用“三八二十四”这句口诀
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
计算方法:12÷4=( )时,想:( )四十二,所以商是( ).
6.解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、
因数×因数=积、一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。
(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)
(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
(记住:平移只能上下移动或左右移动)
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)
(一)填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、教室门的打开和关闭,门的运动是( )现象。
A.平移 B旋转 C平移和旋转
3、下面( )的运动是平移。
A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠
第四单元 表内除法(二)
这单元主要是考口算题。有以下几种形式:
1、用7、8、9的乘法口诀求商
求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。
例.直接口算:28÷4 8÷8
2、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );
第五单元 混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
请画出先算哪一步,再算哪一步(并标上1和2)
1、同级运算的类型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同级运算的类型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。
例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________
5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?
先算____________________再算____________________
例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?
6.练习十三 第4题 (重点)
1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?
2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?
3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?
4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六单元 有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
例:43÷7=()…( )余数可能是( )或者余数最大是( )
(2)至少问题(进一法):商+1
例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。
(3)最多问题(去尾法)
例:小丽有10元钱,买3元一个的面包,最多能买几个?
课例:
1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
第七单元 万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20__读作二千零三,2300读作二千三百】
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如453 < 1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219
补充:
1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。
3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。
例:2647=( )+( )+( )+( )
4、用估算策略解决问题。
96页 例13(估大)
练习19 第8题(估小)
第八单元 克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10两、1两=50克)
5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
小学数学学习方法
01
建立错题集
当然,错题集并不是错题的简单汇总,而是要注明题目考察的知识点,对错误原因进行分析,并从中吸取经验教训,从而避免再次犯错。
02
五步思考法
很多家长都信奉题海战术,总是会给孩子布置很多题目,但这样的效率是很低的。做题也是要有技巧地做,按照五步思考法进行做题,可以让孩子掌握类似的题型,做到举一反三。
01.题目考察的知识点是什么;
02.为什么要这样做;
03.我是如何想到的;
04.有没有其他做法;
05.看看有几种变化的形式。
这样,每遇到一种题型,就会重新学习相关的知识,思考解题技巧,并且变被动为主动,熟练掌握相关的题型。
03
很多孩子在做错题的时候,都只是简单改正,没有去思考背后的原因。因此,如果孩子做错题,要引导他们进行三步纠错法,从而从根源上解决错题。
当孩子做错题的时候,要引导他们从这三个方面进行思考:
01.错在哪里;
02.错的原因是什么;
03.当符合什么条件时,错误才能变成正确。
这样,每当孩子遇到错题,就能对涉及到的知识进行重新学习,从而分析出题型的解题技巧,真正掌握解题方法。