5068教学资源网 > 学习宝典 > 语文 > 学习园地 > 知识积累 > 初二数学知识点的总结

初二数学知识点的总结

文希0分享

初二数学知识点的总结大全

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,是时候写一份总结了。下面是小编为大家整理的初二数学知识点的总结,欢迎参考~

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

解方程组

从“数”的角度看,自变量(x)为何值时两个函数的值相等.并

求出这个函数值

解方程组从“形”的角度看,确定两直线交点的坐标.

数据的分析

数据的代表:平均数、众数、中位数、极差、方差

函数中自变量取值范围的求法

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。)

注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

实数的分类:

正整数

整数零负整数有限小数或无限循环小数

正分数

分数

负分数小数

1.正无理数

无理数无限不循环小数

负无理数

2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3、相反数与倒数;?a(a?0)4、绝对值?|a|??0(a?0)

5、近似数与有效数字;??a(a?0)?

6、科学记数法

7、平方根与算术平方根、立方根;

8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。

    843485