5068教学资源网 > 学习宝典 > 语文 > 学习园地 > 知识积累 > 基础初二数学知识总结

基础初二数学知识总结

文希0分享

基础初二数学知识总结大全

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,是时候写一份总结了。下面是小编为大家整理的基础初二数学知识总结,欢迎参考~

全等三角形

1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全

等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质

(1)全等三角形的对应边相等、对应角相等。

理解:

①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

②对应角的对边为对应边,对应边对

的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定

边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

1、性质:角的平分线上的点到角的两边的距离相等.

2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

注意:三角形的三条角平分线交于一点,这个点到三角形三边的距离相等。

三、学习全等三角形应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

(5)截长补短法证三角形全等。

线段的垂直平分线

1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

轴对称图形

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线

4.轴对称与轴对称图形的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

轴对称

1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2.性质

(1)成轴对称的两个图形全等;

(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

分式

一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。

二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。

分式乘方:分式乘方要把分子、分母分别乘方。

四、整数指数幂:(1) (2)较小数的科学记数法;

五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。

    843489