初二简单必背数学知识
初二简单必背数学知识大全
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它是增长才干的一种好办法,让我们一起认真地写一份总结吧。下面是小编为大家整理的初二简单必背数学知识,欢迎参考~
三角形的内角
三角形内角和性质的推理方法有多种,常见的有以下几种:
结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角
①可过A点作MN∥BC(如图)
②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)
构造同旁内角,过任一顶点作射线平行于对边(如图)
结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°
(因为∠A+∠B+∠C=180°)
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
数据的分析
加权平均数、中位数、众数、极差、方差
初二必备数学知识
位置与坐标
1、确定位置
在平面内,确定物体的位置一般需要两个数据。
2、平面直角坐标系及有关概念
①平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②坐标轴和象限
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
④不同位置的点的坐标的特征
a、各象限内点的坐标的特征
点P(x,y)在第一象限→ x>0,y>0
点P(x,y)在第二象限→ x0
点P(x,y)在第三象限→ x<0,y<0
点P(x,y)在第四象限→ x>0,y<0
b、坐标轴上的点的特征
点P(x,y)在x轴上→ y=0,x为任意实数
点P(x,y)在y轴上→ x=0,y为任意实数
点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点
c、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上→ x与y相等
点P(x,y)在第二、四象限夹角平分线上→ x与y互为相反数
d、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
e、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,—y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(—x,y)
点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(—x,—y)
f、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
点P(x,y)到x轴的距离等于?y?
点P(x,y)到y轴的距离等于?x?
点P(x,y)到原点的距离等于√x2+y2
初二数学知识点
乘法与因式分解a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b||a|+|b|
|a-b||a|+|b|
|a|=ab
|a-b||a|-|b| -|a||a|
一元二次方程的解 -b+(b2-4ac)/2a
-b-(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a
X1_X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac0 注:方程有两个不等的实根
b2-4ac0 注:方程没有实根,有共轭复数根
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7++n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角
初二数学函数知识点归纳
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与x轴交点的横坐标
3.一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4.解不等式ax+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y= ax+b在x轴上方的部分(射线)
所对应的的横坐标的取值范围.