5068教学资源网 > 知识宝典 > 方法百科 > 高考数学选择题答题技巧

高考数学选择题答题技巧

倩愉0分享

高考数学选择题答题技巧及方法

会做的题目拿不到会很遗憾,往往高考数学题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,下面是小编为大家整理的高考数学选择题答题技巧,希望对您有所帮助!

高考数学选择题答题技巧

高考数学选择题答题技巧

一、选择题整体攻略

1.审题要慢,做题要快,下手要准。

要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。

2.提高解选择题的速度,把握好时间。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。12个选择题,解题的基本原则是:小题不能大做,要求“快、准、巧”。因而答题方法很有技巧性,如果题题都严格论证,个个都详细演算,耗时太多,以致于很多学生没时间做后面会做的题而造成隐性失分,留下终生遗憾。所以,一定要把握好做题时间,容易的一分钟一题,难题也不超过五分钟。

3.仔细检查,不留空白。

最后,做完题后如果尚有时间,要仔细检查,有没有遗漏的,有没有涂错的,全面认真地再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。

高考数学选择题答题方法

1.特值检验法

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则

极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.排除法

选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

数学解题方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。②零点分段讨论法:适用于含一个字母的多个绝对值的情况。③两边平方法:适用于两边非负的方程或不等式。④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。

9、观察法

10、代数式求值

方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

高考数学答题方法整理

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

    693101