数学中考二次函数
数学的学习切忌一曝十寒,在保证学习时间的同时,大家也要讲究学习效率,在学习的过程中千万不要心浮气躁。祝各位同学中考考出好成绩。下面是小编给大家带来的数学中考二次函数,欢迎大家阅读参考,我们一起来看看吧!
二次函数中考考点
1.如果自变量的取值是全体实数,那么二次函数在图象顶点处取到最大值(或最小值)。
这时有两种方法求最值:一种是利用顶点坐标公式,一种是利用配方计算。
二次函数的实际应用
在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润最大”、“用料最少”、“开支最节约”、“线路最短”、“面积最大”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。
那么解决这类问题的一般步骤是:
第一步:设自变量;
第二步:建立函数解析式;
第三步:确定自变量取值范围;
第四步:根据顶点坐标公式或配方法求出最值(在自变量的取值范围内)。
常见考法
(1)考查一些带约束条件的二次函数最值;
(2)结合二次函数考查一些创新问题。
二次函数顶点式、交点市、两根式
一般地,自变量x和因变量y之间存在如下关系:
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
误区提醒
(1)忽略自变量的取值范围,所求最值不符合实际意义;
(2)二次函数的坐标系建立的不恰当,给解题带来了困难。
数学二次函数中考考点
考点1:二次函数的图象和性质
一、考点讲解:
1.二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数为二次函数.
2.二次函数的图象及性质:
⑴二次函数y=ax2(a≠0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。
3.图象的平移:将二次函数y=ax2(a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
⑴将y=ax2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同.
初中数学二次函数
1、二次函数的概念
一般地,如果,那么y叫做x的二次函数。叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
数学中考二次函数相关文章: