5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 2023中考数学知识点归纳最新【完整版】

2023中考数学知识点归纳最新【完整版】

华燕24359分享

2023中考数学知识点归纳最新【完整版】

初中生学习数学,总结知识点是非常重要的一个学习环节,尤其是初三考生,更要养成对知识点进行总结归纳的习惯。下面是小编给大家整理的2022中考数学知识点归纳最新【完整版】,仅供参阅!

2023中考数学知识点归纳最新【完整版】


▼▼更多关于“中考知识点”内容推荐点击进入▼▼

★★2022中考数学重点知识点归纳大全★★

★★2022初三语文中考必考知识点大全★★

2022中考语文重点知识点归纳总结大全

★★★★2022中考历史必背知识点大全★★

★★2022中考历史知识点总结归纳大全★★


2022中考数学知识点归纳

相似三角形(7个考点)

考点 1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点 2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点 3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点 4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点 5:三角形的重心

考核要求:知道重心的定义并初步应用。

考点 6:向量的有关概念

考点 7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

锐角三角比(2个考点)

考点 8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点 9:解直角三角形及其应用

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

二次函数(4个考点)

考点 10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

考点 11:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。注意求函数解析式的步骤:一设、二代、三列、四还原。

考点 12:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。

考点 13:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。

圆的相关概念(6个考点)

考点 14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点 15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点 16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点 17 :直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点 18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点 19:画正三、四、六边形

考核要求:能用基本作图工具,正确作出正三、四、六边形。

数据整理和概率统计(9个考点)

考点 20:确定事件和随机事件

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点 21:事件发生的可能性大小,事件的概率

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

考点 22:等可能试验中事件的概率问题及概率计算

考核要求(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

考点 23:数据整理与统计图表

考核要求:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点 24:统计的含义

考核要求:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点 25:平均数、加权平均数的概念和计算

考核要求:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点 26:中位数、众数、方差、标准差的概念和计算

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

考点 27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点 28:中位数、众数、方差、标准差、频数、频率的应用

考核要求:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

中考数学必考知识点

1基本作图知识点

一、基本作图的有关概念:

1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。

2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。

二、基本作图的原理和步骤:

1.原理:边边边公理

2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。

三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。工具虽少但能正确地画出的图形,比度量法画出的图形更精确。

2等腰三角形的性质与判定

三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

3判定方法

判定1:有一个角为90°的三角形是直角三角形。

判定2:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形。

判定3:勾股定理的逆定理

如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。

判定4:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。

判定5:两个锐角互余的三角形是直角三角形。

4二次函数的解析式:

(1)一般式:

(2)顶点式:

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

注意:抛物线位置由决定.

(1)决定抛物线的开口方向

①开口向上.

②开口向下.

(2)决定抛物线与y轴交点的位置.

①图象与y轴交点在x轴上方.

②图象过原点.

③图象与y轴交点在x轴下方.

(3)决定抛物线对称轴的位置(对称轴:)

①同号对称轴在y轴左侧.

②对称轴是y轴.

③异号对称轴在y轴右侧.

(4)顶点坐标.

(5)决定抛物线与x轴的交点情况.、

①△>0抛物线与x轴有两个不同交点.

②△=0抛物线与x轴有唯一的公共点(相切).

③△<0抛物线与x轴无公共点.

(6)二次函数是否具有最大、最小值由a判断.

①当a>0时,抛物线有最低点,函数有最小值.

②当a<0时,抛物线有最高点,函数有最大值.

如何提升中考数学成绩

总结梳理,提炼方法

复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。2过基本技能关

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。做到对每道题要知道它的考点。基本宗旨:知识系统化,练习专题化。3重视夯实数学双基

在复习过程中夯实数学基础,要注意知识的不断深化,重视强化题组训练——感悟数学思想方法除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。4第一轮复习的四点技巧:

搞清课本上每一个概念,公式、法则、性质、公理、定理。重视教材的基础作用和示范作用。抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化。以上就是初三网小编为大家整理的如何提高初三数学成绩。


2022中考数学知识点归纳最新【完整版】相关文章:

2021中考数学知识点归纳(最新完整版)

2022年最新初中数学知识点总结归纳

2021中考数学重点知识点梳理归纳

2021中考数学重点知识点归纳

2021河北中考数学知识考点

2021大连中考数学考点梳理

2021中考数学必考知识点归纳

2021吉林中考数学考点梳理

中考数学的知识点整理2021

2022初三中考数学考前复习归纳总结

    153