苏教版数学中考考点归纳

俊勇1150分享

从笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。才可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程与三角函数。今天小编在这给大家整理了一些苏教版数学中考考点归纳,我们一起来看看吧!

苏教版数学中考考点归纳

苏教版数学中考考点归纳

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点知识:

初中数学第一课,认识正数与负数!新初一的来~

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

重点知识:

初中数学第二课,有理数的相关知识!新初一的来~

4.有理数大小比较

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a<b;< p="">

若a﹣b=0,则a=b.

5.有理数的减法

有理数减法法则

减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)

方法指引:

①在进行减法运算时,首先弄清减数的符号;

②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:

①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

②几个数相乘,有一个因数为0,积就为0。

(4)方法指引

①运用乘法法则,先确定符号,再把绝对值相乘.

②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

7.有理数的混合运算

1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:

(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

8.科学记数法—表示较大的数

1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

2.规律方法总结

①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

数学中考考点归纳

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:

(1)理解相似形的概念;

(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心

考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

数学中考考点

考点1:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点2:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点3:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点4:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点5:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点6:画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。



苏教版数学中考考点归纳相关文章:

苏教数学中考知识点总结整理

2021苏教版数学中考考点大全

数学中考考点

2021苏教版中考数学考点大纲

2021中考数学试题考点

中考数学知识点归纳总结整理

2021苏教版初中数学考点解析

数学初中知识点整理2021

天津高考苏教版高三数学关键知识难点总结2021

天津高考苏教版高三数学关键知识点总结2021

    156513