5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 河南省中考数学考点归纳

河南省中考数学考点归纳

俊勇21150分享

2023河南省中考数学考点归纳

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。今天小编在这给大家整理了一些河南省中考数学考点归纳,我们一起来看看吧!

河南省中考数学考点归纳

河南省中考数学考点归纳

二次根式的加减法

知识点1:同类二次根式

(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

知识点2:合并同类二次根式的方法

合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

知识点3:二次根式的加减法则

二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

知识点4:二次根式的混合运算方法和顺序

运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

知识点5:二次根式的加减法则与乘除法则的区别

乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

中考数学考点归纳

1.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

2.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

3.算术平方根

⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

⑵算术平方根与绝对值

①联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

4.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

5.指数

⑴(—幂,乘方运算)。

①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)。

⑵零指数:=1(a≠0)。

负整指数:=1/(a≠0,p是正整数)。

中考数学考点

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

(1)直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

(2)配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)系数化1:将二次项系数化为1

3)移项:将常数项移到等号右侧

4)配方:等号左右两边同时加上一次项系数一半的平方

5)变形:将等号左边的代数式写成完全平方形式

6)开方:左右同时开平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。


河南省中考数学考点归纳相关文章:

中考数学题型考点归纳

初中数学考点归纳整理

2021中考数学考点合集

2021中考数学知识点归纳(最新完整版)

2020中考数学复习指导:中考数学重要考点归纳

2021中考数学重点知识点梳理归纳

2021中考数学考点总结归纳

中考数学填空题考点归纳

中考数学的知识点整理2021

初三数学重点难点考点归纳

    160126