东莞中考数学考点归纳
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。被人誉为“这个时代所能夸耀的最巨大的工作”。今天小编在这给大家整理了一些东莞中考数学考点归纳,我们一起来看看吧!
东莞中考数学考点归纳
抛物线顶点坐标公式
y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)
y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)
相关结论
过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有
①x1_x2=p^2/4,y1_y2=—P^2,要在直线过焦点时才能成立;
②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];
③(1/|FA|)+(1/|FB|)=2/P;
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);
⑥弦长公式:AB=√(1+k^2)_│x2-x1│;
⑦△=b^2-4ac;
⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;
⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有两个实数根;
⑵△=b^2-4ac=0有两个一样的实数根;
⑶△=b^2-4ac<0没实数根。
中考数学考点归纳
一、等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形
等边三角形
1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
中考数学考点
直角三角形全等
1、直角三角形全等的判定有5种:
(1)、两角及其夹边对应相等的两个三角形全等;(ASA)
(2)、两边及其夹角对应相等的两个三角形全等;(SAS)
(3)、三边对应相等的两个三角形全等;(SSS)
(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)
(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)
2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半
3、在直角三角形中,斜边上的中线等于斜边的一半
4垂直平分线:垂直于一条线段并且平分这条线段的直线。
性质:线段垂直平分线上的点到这一条线段两个端点距离相等。
判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
6、角平分线上的点到角两边的距离相等。
7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
8、角平分线是到角的两边距离相等的所有点的集合。
9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
10、三角形三条中线交于一点,交点为三角形的重心。
11、三角形三条高线交于一点,交点为三角形的垂心。
东莞中考数学考点归纳相关文章:
★ 数学中考考点