5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 山西省中考数学考点总结

山西省中考数学考点总结

俊勇21253分享

2023山西省中考数学考点总结

数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果。今天小编在这给大家整理了一些山西省中考数学考点总结,我们一起来看看吧!

山西省中考数学考点总结

山西省中考数学考点总结

1.1正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

1.2有理数

1.有理数:

(1)整数:正整数、0、负整数统称整数;

(2)分数:正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2.数轴:

(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3.相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4.绝对值:

(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

①有理数加法法则:

a.同号两数相加,取相同的符号,并把绝对值相加。

b.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

c.一个数同0相加,仍得这个数。

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5有理数的乘方

1.求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2.有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3.把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。

中考数学考点总结

1.求证“两线段相等”的问题:

2.“平行于y轴的动线段长度的值”的问题:

由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的值及端点坐标。

3.求一个已知点关于一条已知直线的对称点的坐标问题:

先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。

4.“抛物线上是否存在一点,使之到定直线的距离”的问题:

(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为距离。

(方法2)该问题等价于相应动三角形的面积问题,从而可先求出该三角形取得面积时,动点的坐标,再用点到直线的距离公式,求出其距离。

(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其距离运用点到直线的距离公式可以轻松求出。

中考数学考点

1、三角形的的内心

与三角形各边都相切的圆叫做三角形的内切圆。

内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。

注意内心外心的区别和应用。三角形的内心必然在△内部,外心则有可能在外部

内切圆半径的计算方法

三角形面积=内切圆半径三角形周长/2

例题(2011广东南塘二模)Rt△ABC中,∠C=90°,AC=4,BC=3,内切圆半径=;

2、点和圆的位置关系

点P在圆内d点P在圆上d=r

点P在圆外d>r

3、三个相等:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。

4、直线和圆的位置关系

直线与圆相交(两个交点)d直线与圆相切(一个交点)d=r

直线与圆相离(没有交点)d>r

5、圆和圆的位置关系

圆与圆相交(两个交点)R-r圆与圆相切(一个交点)d=R-r(内切)d=R+r(外切)

圆与圆外离(没有交点)d>R+r

圆与圆内含(没有交点)d还一种最特殊情况,同心圆d=0

注意:相切一定要看清楚,是内切还是外切,还是两种都可能

学生可尝试画一个数轴区域示意图

6、对圆而言,请注重其对称性

相切的两个圆,不论内切外切,显然,切点和两个圆心应该在同一直线上。

7、扇形的弧长及面积

扇形:由两条半径及两条半径组成的角对应的弧形成的图形

扇形弧长:

注意区别弧长与周长

扇形面积

弧长及面积的关系

8、正多边形

正多边形:各边长相等,各顶角相等的多边形

我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心

外接圆的半径叫做正多边形的半径

正多边形的每一边所对的圆心角叫做正多边形的中心角

中心到正多边形的一边的距离叫做正多边形的边心距

正多边形的计算:遵循每条边所对应的圆心角的度数为360/n即可,利用垂径定理,等腰三角形进行解答。

9、圆锥的侧面积和全面积

圆锥是由一个底面和一个侧面围成的

我们把连接圆锥顶点和底边圆周上任意一点的线段叫做圆锥的母线

圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为,因此圆锥的侧面积为,圆锥的全面积为

圆锥侧面展开扇形的中心角可通过此扇形的弧长及半径,进行计算

10、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点

把一个图形绕着某一个点旋转180度

如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

山西省中考数学考点总结相关文章:

2021山西省中考数学考点汇总

2021山西省中考数学考点分析

初中数学考点归纳整理

2021中考数学试题考点

中考数学知识点归纳总结整理

中考数学知识点总结整理

数学中考知识点归纳整理

2021中考数学知识点归纳(最新完整版)

2021中考数学考点合集

初中数学中考考点归纳总结2021

    164337