5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 2023中考数学重点知识点归纳

2023中考数学重点知识点归纳

华燕21164分享

2023中考数学重点知识点归纳

中考生们要想掌握所学的数学知识点,就要学会对数学知识点进行整理和汇总。在2021年中考即将到来之际,小编给大家精心准备了中考数学重点知识点归纳,一起来看看吧!

2023中考数学重点知识点归纳

【2021中考数学知识点梳理】

一、圆和圆的位置关系

1、圆和圆的位置关系

如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距

两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定

设两圆的半径分别为R和r,圆心距为d,那么

两圆外离d>R+r

两圆外切d=R+r

两圆相交R-r

两圆内切d=R-r(R>r)

两圆内含dr)

4、两圆相切、相交的重要性质

如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

二、圆的方程

1、圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2、圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0。在圆上任意一点的曲率半径都是r。

三、特殊位置的点的坐标的特点

1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

4.点到轴及原点的距离

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方的平方根。

四、向量的有关概念和公式

如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移.位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作.如果点移动的方向与数轴的正方向相同,则向量为正,否则为负.线段的长叫做向量的长度,记作.向量的长度连同表示其方向的正负号叫做向量的坐标(或数量),用表示.这里同学们要分清,三个符号的含义。

对于数轴上任意三点,都有成立.该等式左边表示在数轴上点向点作一次位移,等式右边表示点先向点作一次位移,再由点向点作一次位移,它们的最终结果是相同的。

向量的坐标公式(或数量公式),它表示向量的数量等于终点的坐标减去起点的坐标,这个公式非常重要.

有相等坐标的两个向量相等,看做同一个向量;反之,两个相等向量坐标必相等。

注意:①相等的所有向量看做一个整体,作为同一向量,都等于以原点为起点,坐标与这所有向量相等的那个向量.②向量与数轴上的实数(或点)是一一对应的,零向量即原点。

五、公式证明方法

平面向量证法

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2___osC

即CosC=(a^2+b^2-c^2)/2__

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

其实不同于平面向量证法的还有另外一种证明方法,那就是平面几何证法。

六、角的分类

(1)锐角:小于直角的角叫做锐角

(2)直角:平角的一半叫做直角

(3)钝角:大于直角而小于平角的角

(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。

(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°

七、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

【中考数学易错知识点归纳】

一、数学式

陷阱1、在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。常见陷阱是在实数的运算中符号层层相扣。

陷阱2、要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。

陷阱3、注意分式运算中的通分不要与分式方程计算中的去分母混淆。

陷阱4、非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。

陷阱5、五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。

陷阱6、科学计数法中,精确度和有效数字的概念要清楚。

二、方程(组)与不等式(组)

陷阱1、运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。

陷阱2、常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。

陷阱3、关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。

陷阱4、解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。

陷阱5、关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。

三、函数

陷阱1、关于函数自变量的取值范围埋设陷阱。

注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。

陷阱2、根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。

陷阱3、二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。常在选择题中的压轴题来考查。

陷阱4、在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。

陷阱5、在关于二次函数的应用题中,常见陷阱是当y取得最值时,自变量x不在其范围内。

陷阱6、根据反比例函数性质比较大小时,要注意看两点是否在同一分支上,若不在同一分支上,则直接利用正负情况比较大小;若在同一分支上,则利用增减性判断;若末明确点所在象限,要分类讨论。

四、三角形

陷阱1、三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

陷阱2、在论证三角形全等、三角形相似等问题时,对应点或者对应边容易出错。注意边边角(SSA)不能证两个三角形全等。

陷阱3、关于等腰三角形的陷阱比较多,并且几乎每年必考,如在解决仅告诉某三角形是等腰三角形,而没有具体说明哪两条边是腰、那两个角是底角的计算与证明问题时,注意需分类讨论。

陷阱4、运用勾股定理及其逆定理计算线段的长、证明线段的数量关系、解决与面积有关的问题以及简单的实际问题时,注意先确定直角或者斜边,如不能确定,需分类讨论。

陷阱5、涉及三角形面积时,确定底边对应的高容易出错(特别拿钝角三角形为陷阱诱导考生出错)。

五、四边形

陷阱1、平行四边形的性质和判定,如何灵活、恰当地应用。如利用性质“一组对边平行且相等的四边形是平行四边形”时,注意“同一组对边”这个关键词。

陷阱2、常通过条件中没有给出图形这一方法埋设陷阱,大家要善于利用已知条件画出所有可能的情形,当题目中有不确定的已知条件时,要注意分类讨论。防止在解题过程中只看到一种情形,要注意全面考虑。

陷阱3、四边形中的翻折、平移、旋转、剪拼等动手操作性问题,注意其中的不变与变化。

六、圆

陷阱1、对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。

陷阱2、考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,许多人容易忽视其中的一种情况。

陷阱3、圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

七、对称图形

陷阱1、图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,如在轴对称和旋转中角的大小不变,线段的长短不变。

陷阱2、将轴对称与全等混淆,关于直线对称与关于轴对称混淆。

八、统计与概率

陷阱1、求概率的方法:

(1)简单事件;

(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;

(3)复杂事件求概率的方法运用频率估算概率。

陷阱2、判断是否公平的方法是判断概率是否相等,注意频率与概率的联系与区别。

【中考数学知识点口诀】

合并同类项,法则不能忘,只求系数和,字母、指数不变样。

恒等变换

两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

平方差公式

平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方

完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解

一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决

挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

单项式运算

加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤

去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集

大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集

大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

分式方程的解法步骤

同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

最简根式的条件

最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

特殊点坐标特征

坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

象限角的平分线

象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

平行某轴的直线

平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

对称点坐标

对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

自变量的取值范围

分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

函数图像的移动规律

若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

一次函数图像与性质口诀

一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。


2021中考数学重点知识点归纳相关文章:

2021中考数学考点总结归纳

数学15个重要考点备考2021中考指导

中考数学最后冲刺复习技巧2021

2021中考复习方法和技巧总结

中考数学高效率复习五大技巧2021

中考数学复习巧妙解题高分攻略2021

2021中考复习方法和技巧总结

数学三大重点规律备考2021中考指导

数学易出错的61个知识点备考2021中考指导

2020中考数学历年高频考点归纳

    175