5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 初中数学各年级重点

初中数学各年级重点

世平21372分享

初中数学各年级重点最新

数学中考考点七年级数学

有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

【考察内容】

①整式的概念和简单的运算,主要是同类项的概念和化简求值

②完全平方公式,平方差公式的几何意义

③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

【考察内容】

①方程及方程解的概念

②根据题意列一元一次方程

③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。

【考察内容】

①平行线的性质(公理)

②平行线的判别方法

③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【考察内容】

①考察平面直角坐标系内点的坐标特征

②函数自变量的取值范围和球函数的值

③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

【考察内容】

①方程组的解法,解方程组

②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

【考察内容:】

① 一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。

② 列不等式(组)解决经济问题,调配问题等,主要以解答题为主。

③留意不等式(组)和函数图像的结合问题。

(5)数据库的收集整理与描述

分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。

【考察内容】

①常见统计图和平均数,众数,中位数的计算分析。

②方差,极差的应用分析

③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。

数学中考考点八年级数学

三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。

(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。

【考查内容】

①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。

②三角形全等融入平行四边形的证明

③三角形运动,折叠,旋转,拼接形成的新数学问题

④等腰三角形的性质与判定,面积,周长等

⑤直角三角形的性质,勾股定理是重点

⑥三角形与圆的相关位置关系

⑦三角形中位线的性质应用

(2)全等三角形

(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。

【考察内容】

①轴对称和轴对称图形的性质判别。

②注意镜面对称与实际问题的解决。

(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。

【考察内容】

①整式的概念和简单的运算,主要是同类项的概念和化简求值

②完全平方公式,平方差公司的几何意义

③利用提公因式法和公式法分解因式。

(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。

【考察内容】

①分式的概念,性质,意义

②分式的运算,化简求值。

③列分式方程解决实际问题。

初二下册

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

一. 不等关系

※1. 一般地,用符号(或), (或)连接的式子叫做不等式.

※2. 准确翻译不等式,正确理解非负数、不小于等数学术语.

非负数:大于等于0(0) 、0和正数、不小于0

非正数:小于等于0(0) 、0和负数、不大于0

二. 不等式的基本性质

※1. 掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,

即:如果ab,那么a+cb+c, a-cb-c.

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,

即如果ab,并且c0,那么acbc, .

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,

即:如果ab,并且c0,那么ac

※2. 比较大小:(a、b分别表示两个实数或整式)

一般地:

如果ab,那么a-b是正数;反过来,如果a-b是正数,那么a

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

ab,则a-b0

a=b,则a-b=0

a

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

三. 不等式的解集:

※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数.

※3. 不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①定点:有等号的是实心圆点,无等号的是空心圆圈;

②方向:大向右,小向左

四. 一元一次不等式:

※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.

※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

※3. 解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(注意不等号方向改变的'问题)

※4. 不等式应用的探索(利用不等式解决实际问题)

列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意.

五. 一元一次不等式与一次函数

六. 一元一次不等式组

※1. 定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.

如果这些不等式的解集无公共部分,就说这个不等式组无解.

几个不等式解集的公共部分,通常是利用数轴来确定.

※3. 解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,

(3)写出这个不等式组的解集.

两个一元一次不等式组的解集的四种情况(a、b为实数,且a

(同大取大;同小取小;大小小大中间找;大大小小无解)

第二章 分解因式

一. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

二. 提公共因式法

※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

※2. 概念内涵:

(1)因式分解的最后结果应当是积

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,ab +ac=a(b+c)

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提彻底;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

三. 运用公式法

※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2. 主要公式:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

※5. 因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)因式分解的最后结果必须是几个整式的乘积;

(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

第三章 分式

一. 分式

※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.

整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么称 为分式,对于任意一个分式,分母都不能为零.

※2. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.

※3. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.

※4. 分子与分母没有公因式的分式,叫做最简分式.

二. 分式的乘除法法则

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)

三. 分式的加减法

※1. 分式与分数类似,也可以通分.

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

※2. 分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.

(1)同分母的分式相加减,分母不变,把分子相加减;

(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

※3. 概念内涵:

通分的关键是确定最简分母,其方法如下:

(1)最简公分母的系数,取各分母系数的最小公倍数;

(2)最简公分母的字母,取各分母所有字母的最高次幂的积,

(3)如果分母是多项式,则首先对多项式进行因式分解.

四. 分式方程

※1. 解分式方程的一般步骤:

①在方程的两边都乘以最简公分母,约去分母,化成整式方程;

②解这个整式方程;

③把整式方程的根代入原方程检验.

※2. 列分式方程解应用题的一般步骤:

①审清题意;

②设未知数;

③根据题意找相等关系,列出(分式)方程;

④解方程,并验根;

⑤写出答案.

数学中考考点九年级数学

初三上册数学知识点归纳

第21章 二次根式

学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。

在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到

并运用它们进行二次根式的化简。

二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

第22章 一元二次方程

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

第23章 旋转

学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的`图形的方法。

23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

第24章 圆

圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

第25 章 概率初步

将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。

初三下册数学知识点归纳

二次函数及其图像

二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:

一般式

y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a) ;

顶点式

y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1_x2) (y1为截距)

求根公式

二次函数表达式的右边通常为二次三项式。

求根公式

x是自变量,y是x的二次函数

x1,x2=[-b((b^2-4ac))]/2a

(即一元二次方程求根公式)(如右图)

求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有 1本身图像,旁边注明函数。

2画出对称轴,并注明X=什么

3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

轴对称

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )

当-b/2a=0时,P在y轴上;当= b^2;-4ac=0时,P在x轴上。

开口

3.二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab 0 ),对称轴在y轴右。

事实上,b有其自身的.几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

抛物线与x轴交点个数

6.抛物线与x轴交点个数

= b^2-4ac0时,抛物线与x轴有2个交点。

= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

= b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= -bb^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

当a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b在{x|x-b/2a}上是减函数,在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a0)

特殊值的形式

7.特殊值的形式

①当x=1时 y=a+b+c

②当x=-1时 y=a-b+c

③当x=2时 y=4a+2b+c

④当x=-2时 y=4a-2b+c

二次函数的性质

8.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

正无穷);②[t,正无穷)

奇偶性:当b=0时为偶函数,当b0时为非奇非偶函数。

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a0

⑵a0,则抛物线开口朝上;a0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷=b^2-4ac,

0,图象与x轴交于两点:

([-b-]/2a,0)和([-b+]/2a,0);

=0,图象与x轴交于一点:

(-b/2a,0);

0,图象与x轴无交点;

②y=a(x-h)^2+k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a0)

对称轴X=(X1+X2)/2 当a0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a0且X≦(X1+X2)/2时Y随X的增大而减小

此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。

交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。

用函数观点看一元二次方程

1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。

2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。 (九年级)初三下册数学知识点归纳就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。


初中数学各年级重点相关文章:

初中数学重要知识点归纳有哪些

初中数学三年重难知识点

初一数学上册重点知识整理 七年级数学上册重点汇总

初一数学上册知识点总结归纳最新2021

初中数学总复习教学计划

初中各年级数学教学计划2021

初中数学中学教学计划2021

七年级上册数学总结2020年

初中数学学习方法总结100条

八年级数学的复习方法技巧总结

    37729