5068教学资源网 > 学习宝典 > 中考 > 中考考点 > 数学 > 中考数学易错知识点总结

中考数学易错知识点总结

李金0分享

中考数学易错知识点总结大全

水滴石穿,绳锯木断。进入备考中,同学们也需要多面积累才能到达好的效果。通过复习,能够巩固所学知识并灵活运用,考试时会更得心应手。下面小编给大家整理了关于中考数学易错知识点总结的内容,欢迎阅读,内容仅供参考!

中考数学易错知识点总结

中考数学易错知识点总结

数与式

易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。精确度,有效数字。

易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

方程(组)与不等式(组)

易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带x公因式要回头检验!

易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

函数

易错点1:各个待定系数表示的意义。

易错点2:熟练掌握各种函数解析式的求法,有几个待定系数就要几个点值。

易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

易错点6:与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。

易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合,学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

三角形

易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用,探究各种解题方法。

易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。

易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

四边形

易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。

易错点2:平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。

易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。

易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。

易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。矩形与正方形的折叠。

易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。

易错点7:梯形问题的主要做辅助线的方法。

易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。

易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。

易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,很容易忽视其中的一种情况。

易错点5:与圆有关的位置关系把握好d与R和R+r,R-r之间的关系以及应用上述的方法求解。

易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

易错点7:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。

对称图形

易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。

易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。

易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。

统计与概率

易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。

易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。

易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。

易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。

易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。

易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)。

易错点7:求概率的方法:

(1)简单事件。

(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。

(3)复杂事件求概率的方法运用频率估算概率。

易错点8:判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

中考数学知识点复习口诀

有理数的加法运算

同号相加一边倒;异号相加“大”减“小”,

符号跟着大的跑;绝对值相等“零”正好。

合并同类项

合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则

去括号、添括号,关键看符号,

括号前面是正号,去、添括号不变号,

括号前面是负号,去、添括号都变号。

一元一次方程

已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

平方差公式

平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式

完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

首±尾括号带平方,尾项符号随中央。

因式分解

一提(公因式)二套(公式)三分组,细看几项不离谱,

两项只用平方差,三项十字相乘法,阵法熟练不马虎,

四项仔细看清楚,若有三个平方数(项),

就用一三来分组,否则二二去分组,

五项、六项更多项,二三、三三试分组,

以上若都行不通,拆项、添项看清楚。

单项式运算

加、减、乘、除、乘(开)方,三级运算分得清,

系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题步骤

去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,

两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集

大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

一元二次不等式、一元一次绝对值不等式的解集

大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简。

分式方程的解法步骤

同乘最简公分母,化成整式写清楚,

求得解后须验根,原(根)留、增(根)舍,别含糊。

最简根式的条件

最简根式三条件,号内不把分母含,

幂指数(根指数)要互质、幂指比根指小一点。

特殊点的坐标特征

坐标平面点(x,y),横在前来纵在后;

(+,+),(-,+),(-,-)和(+,-),四个象限分前后;

x轴上y为0,x为0在y轴。

象限角的平分线

象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反。

平行某轴的直线

平行某轴的直线,点的坐标有讲究,

直线平行x轴,纵坐标相等横不同;

直线平行于y轴,点的横坐标仍照旧。

对称点的坐标

对称点坐标要记牢,相反数位置莫混淆,

x轴对称y相反,y轴对称x相反;

原点对称记,横纵坐标全变号。

自变量的取值范围

分式分母不为零,偶次根下负不行;

零次幂底数不为零,整式、奇次根全能行。

函数图像的移动规律

若把一次函数的解析式写成y=k(x+0)+b,

二次函数的解析式写成y=a(x+h)2+k的形式,

则可用下面的口诀

“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.

一次函数图象与性质口诀

一次函数是直线,图象经过三象限;

正比例函数更简单,经过原点一直线;

两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;

k为负来左下展,变化规律正相反;

k的绝对值越大,线离横轴就越远。

二次函数图像与性质口诀

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象现;

开口、大小由a断,c与y轴来相见;

b的符号较特别,符号与a相关联;

顶点位置先找见,y轴作为参考线;

左同右异中为0,牢记心中莫混乱;

顶点坐标最重要,一般式配方它就现;

横标即为对称轴,纵标函数最值见.

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

反比例函数图像与性质口诀

反比例函数有特点,双曲线相背离得远;

k为正,图在一、三(象)限,k为负,图在二、四(象)限;

图在一、三函数减,两个分支分别减.

图在二、四正相反,两个分支分别增;

线越长越近轴,永远与轴不沾边。

特殊三角函数值记忆

首先记住30度、45度、60度的正弦值、余弦值的分母都是2,

正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

三角函数的增减性:正增余减

平行四边形的判定

要证平行四边形,两个条件才能行,

一证对边都相等,或证对边都平行,

一组对边也可以,必须相等且平行.

对角线,是个宝,互相平分“跑不了”,

对角相等也有用,“两组对角”才能成。

梯形问题的辅助线

移动梯形对角线,两腰之和成一线;

平行移动一条腰,两腰同在“△”现;

延长两腰交一点,“△”中有平行线;

作出梯形两高线,矩形显示在眼前;

已知腰上一中线,莫忘作出中位线。

添加辅助线歌

辅助线,怎么添?找出规律是关键.

题中若有角(平)分线,可向两边作垂线;

线段垂直平分线,引向两端把线连;

三角形边两中点,连接则成中位线;

三角形中有中线,延长中线翻一番。

圆的证明歌

圆的证明不算难,常把半径直径连;

有弦可作弦心距,它定垂直平分弦;

直径是圆弦,直圆周角立上边,

它若垂直平分弦,垂径、射影响耳边;

还有与圆有关角,勿忘相互有关联,

圆周、圆心、弦切角,细找关系把线连.

同弧圆周角相等,证题用它最多见,

圆中若有弦切角,夹弧找到就好办;

圆有内接四边形,对角互补记心间,

外角等于内对角,四边形定内接圆;

直角相对或共弦,试试加个辅助圆;

若是证题打转转,四点共圆可解难;

要想证明圆切线,垂直半径过外端,

直线与圆有共点,证垂直来半径连,

直线与圆未给点,需证半径作垂线;

四边形有内切圆,对边和等是条件;

如果遇到圆与圆,弄清位置很关键,

两圆相切作公切,两圆相交连公弦。

中考数学压轴题解题技巧

1、基本知识不丢一分

在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。“首先要梳理知识网络,思路清晰知己知彼。其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。

2、运用数形结合思想

中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3、利用条件或结论的多变性,运用分类讨论的思想

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考数学压轴题分类讨论思想解题已成为新的热点。

4、分题得分

中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

5、分段得分

一道中考数学压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。

    684234