寒假作业七年级数学2014年(3)
A.2cm2 B.3cm2 C.6cm2 D.12cm2
6.若圆锥的底面积为16cm2,母线长为12cm,则它的侧面展开图的圆心角为( ).
A.240° B.120° C.180° D.90°
7.底面直径为6cm的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).
A.5cm B.3cm C.8cm D.4cm
8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).
A.120° B.1 80° C.240° D. 300°
9.如图,AB是圆O的直径,点 在圆O上,且 , .
(1)求 的值;
(2)如果 ,垂足为 ,求 的长;
(3)求图中阴影部分的面积.
第9题图
(三)综合拓展
10.如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1与⊙O2外切,⊙O2、⊙O3、⊙O4两两外切,并且O1、O2、O3三点在同一直线上.
(1)请直接写出O2O4的长;
(2)若⊙O1沿图中箭头所示方向在⊙O2、的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.
11. .如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成.量得其中一个三角形OAB的边OA=OB=56cm.
(1)求∠AOB的度数;
(2)求△OAB的面积.(不计缝合时重叠部分的面积)
圆小检测
同学们,经过一段时间的复习,该检验一下你们的实力了,请一定要注意步骤书写.
一、选择题
1.已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为( )
A.5cm B.13cm C.9cm 或13cm D.5cm 或13cm
2.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )
A.与 轴相离、与 轴相切 B.与 轴、 轴都相离
C.与 轴相切、与 轴相离 D.与 轴、 轴都相切
3.圆锥的侧面积为8πcm2, 侧面展开图圆心角为45°,则该圆锥母线长为( )
A.64cm B.8cm
4.如图,正三角形的内切圆半径为1,那么三角形的边长为( )
A.2 B. C. D.3
5、如图, 分别是圆O的切线, 为切点, 是圆O的直径, , 的度数为( )
A. B. C. D.
二、填空题
6.如图, 是⊙O的弦, 于点 ,若 , ,则⊙O的半径为 cm.
7.若O为△ABC的外心,且∠BOC=60°,则∠BAC= °.
8.圆O1和圆O2的半径分别为3cm和5cm,且它们内切,则圆心距 等于
cm.
9.圆锥的底面半径是1,母线长是4,它的侧面积是 ______.
10.已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是 .
三、解答题
11. 是⊙O的直径, 切⊙O于 , 交⊙O于 ,连 .若 ,求 的度数.
12. 10.如图, 是圆O的一条弦, ,垂足为 ,
交圆O于点 ,点 在圆0上.
(1)若 ,求 的度数;
(2)若 , ,求 的长.
概率初步
(一)基础过关
1.下列成语所描述的事件是必然事件的是( )
A 水中捞月 B拔苗助长 C守株待兔 D瓮中捉鳖
2. 一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是( )
3.有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)如图所示散乱地放在桌子上。
(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率。
(2)若从计算器 和保护盖中随机取两个,用树状图或列表法,求恰好匹配的概率。
(二)能力提升
4.今年“五•一”节,益阳市某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会(如图,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向2或5时,该顾客获二等奖(若指针指向分界线则重转).经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为______人次.
5.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( ).
A. B. C. D.
(三)综合拓展
6.在一个暗箱里放有a个除颜色外其它完
全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
(A)12 (B)9 (C)4 (D)3
7. 2010年上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.
(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)
(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?
二次函数的图像和性质
(一)基础过关
1、若函数 是二次函数,则 的值为( )
A.3或 B.3 C. D.2或
2、将二次函数 化为一般形式为 .